ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007
    Description: Electrical microstimulation can establish causal links between the activity of groups of neurons and perceptual and cognitive functions. However, the number and identities of neurons microstimulated, as well as the number of action potentials evoked, are difficult to ascertain. To address these issues we introduced the light-gated algal channel channelrhodopsin-2 (ChR2) specifically into a small fraction of layer 2/3 neurons of the mouse primary somatosensory cortex. ChR2 photostimulation in vivo reliably generated stimulus-locked action potentials at frequencies up to 50 Hz. Here we show that naive mice readily learned to detect brief trains of action potentials (five light pulses, 1 ms, 20 Hz). After training, mice could detect a photostimulus firing a single action potential in approximately 300 neurons. Even fewer neurons (approximately 60) were required for longer stimuli (five action potentials, 250 ms). Our results show that perceptual decisions and learning can be driven by extremely brief epochs of cortical activity in a sparse subset of supragranular cortical pyramidal neurons.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425380/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3425380/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huber, Daniel -- Petreanu, Leopoldo -- Ghitani, Nima -- Ranade, Sachin -- Hromadka, Tomas -- Mainen, Zach -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2008 Jan 3;451(7174):61-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18094685" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials/physiology/radiation effects ; Algal Proteins/genetics/metabolism ; Animals ; Behavior, Animal/*physiology/*radiation effects ; Cerebral Cortex/cytology/*physiology/*radiation effects ; Electric Stimulation ; Learning/*physiology/radiation effects ; Mice ; Movement/*physiology ; Optics and Photonics ; Photic Stimulation ; Pyramidal Cells/metabolism/radiation effects ; Rhodopsins, Microbial/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-10-16
    Description: Behaviour is governed by activity in highly structured neural circuits. Genetically targeted sensors and switches facilitate measurement and manipulation of activity in vivo, linking activity in defined nodes of neural circuits to behaviour. Because of access to specific cell types, these molecular tools will have the largest impact in genetic model systems such as the mouse. Emerging assays of mouse behaviour are beginning to rival those of behaving monkeys in terms of stimulus and behavioural control. We predict that the confluence of new behavioural and molecular tools in the mouse will reveal the logic of complex mammalian circuits.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Connor, Daniel H -- Huber, Daniel -- Svoboda, Karel -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 15;461(7266):923-9. doi: 10.1038/nature08539.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19829372" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Behavior, Animal/physiology ; Brain/*cytology/*metabolism/physiology ; Mice ; Neural Pathways/*physiology ; Somatosensory Cortex/cytology/metabolism/physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...