ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-05-16
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Barry, Dave -- McCulloch, Richard -- G0401553/Medical Research Council/United Kingdom -- England -- Nature. 2009 May 14;459(7244):172-3. doi: 10.1038/459172a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19444197" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigenic Variation/*genetics ; *DNA Breaks, Double-Stranded ; DNA Repair/*genetics ; Deoxyribonucleases, Type II Site-Specific/genetics/metabolism ; Gene Conversion/*genetics ; Humans ; *Models, Genetic ; Saccharomyces cerevisiae Proteins/genetics/metabolism ; Trypanosoma brucei brucei/*genetics/*immunology ; Variant Surface Glycoproteins, Trypanosoma/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2007-02-17
    Description: Chemoautotrophic endosymbionts are the metabolic cornerstone of hydrothermal vent communities, providing invertebrate hosts with nearly all of their nutrition. The Calyptogena magnifica (Bivalvia: Vesicomyidae) symbiont, Candidatus Ruthia magnifica, is the first intracellular sulfur-oxidizing endosymbiont to have its genome sequenced, revealing a suite of metabolic capabilities. The genome encodes major chemoautotrophic pathways as well as pathways for biosynthesis of vitamins, cofactors, and all 20 amino acids required by the clam.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Newton, I L G -- Woyke, T -- Auchtung, T A -- Dilly, G F -- Dutton, R J -- Fisher, M C -- Fontanez, K M -- Lau, E -- Stewart, F J -- Richardson, P M -- Barry, K W -- Saunders, E -- Detter, J C -- Wu, D -- Eisen, J A -- Cavanaugh, C M -- New York, N.Y. -- Science. 2007 Feb 16;315(5814):998-1000.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Harvard University, 16 Divinity Avenue, Biolabs 4080, Cambridge, MA 02138, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17303757" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bivalvia/*microbiology ; Carbon/metabolism ; Chemoautotrophic Growth ; Gammaproteobacteria/*genetics/isolation & purification/metabolism/ultrastructure ; *Genome, Bacterial ; Molecular Sequence Data ; Photosynthesis ; *Symbiosis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-07-16
    Description: To find inherited causes of autism-spectrum disorders, we studied families in which parents share ancestors, enhancing the role of inherited factors. We mapped several loci, some containing large, inherited, homozygous deletions that are likely mutations. The largest deletions implicated genes, including PCDH10 (protocadherin 10) and DIA1 (deleted in autism1, or c3orf58), whose level of expression changes in response to neuronal activity, a marker of genes involved in synaptic changes that underlie learning. A subset of genes, including NHE9 (Na+/H+ exchanger 9), showed additional potential mutations in patients with unrelated parents. Our findings highlight the utility of "homozygosity mapping" in heterogeneous disorders like autism but also suggest that defective regulation of gene expression after neural activity may be a mechanism common to seemingly diverse autism mutations.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586171/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586171/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morrow, Eric M -- Yoo, Seung-Yun -- Flavell, Steven W -- Kim, Tae-Kyung -- Lin, Yingxi -- Hill, Robert Sean -- Mukaddes, Nahit M -- Balkhy, Soher -- Gascon, Generoso -- Hashmi, Asif -- Al-Saad, Samira -- Ware, Janice -- Joseph, Robert M -- Greenblatt, Rachel -- Gleason, Danielle -- Ertelt, Julia A -- Apse, Kira A -- Bodell, Adria -- Partlow, Jennifer N -- Barry, Brenda -- Yao, Hui -- Markianos, Kyriacos -- Ferland, Russell J -- Greenberg, Michael E -- Walsh, Christopher A -- 1K01MH71801/MH/NIMH NIH HHS/ -- 1K23MH080954-01/MH/NIMH NIH HHS/ -- 1R01 MH083565/MH/NIMH NIH HHS/ -- 5P30HD018655-26/HD/NICHD NIH HHS/ -- 5R01NS048276-05/NS/NINDS NIH HHS/ -- K01 MH071801/MH/NIMH NIH HHS/ -- K01 MH071801-04/MH/NIMH NIH HHS/ -- K01 MH071801-05/MH/NIMH NIH HHS/ -- K23 MH080954/MH/NIMH NIH HHS/ -- K23 MH080954-01/MH/NIMH NIH HHS/ -- MH64547/MH/NIMH NIH HHS/ -- N01-HG-65403/HG/NHGRI NIH HHS/ -- R01 MH083565/MH/NIMH NIH HHS/ -- R01 NS048276/NS/NINDS NIH HHS/ -- R01 NS048276-01/NS/NINDS NIH HHS/ -- R01 NS048276-02/NS/NINDS NIH HHS/ -- R01 NS048276-03/NS/NINDS NIH HHS/ -- R01 NS048276-04/NS/NINDS NIH HHS/ -- R01 NS048276-05/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2008 Jul 11;321(5886):218-23. doi: 10.1126/science.1157657.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Genetics, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18621663" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics ; Animals ; Autistic Disorder/*genetics/physiopathology ; Brain/metabolism ; Cadherins/genetics ; *Chromosome Mapping ; Consanguinity ; Female ; Gene Deletion ; Gene Dosage ; Gene Expression Regulation ; Genes, Recessive ; Genetic Predisposition to Disease ; Homozygote ; Humans ; Lod Score ; Male ; *Mutation ; Neurons/physiology ; Oligonucleotide Array Sequence Analysis ; Pedigree ; Polymorphism, Single Nucleotide ; Rats ; Sodium-Hydrogen Antiporter/genetics ; Transcription Factors/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-07-16
    Description: African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Berriman, Matthew -- Ghedin, Elodie -- Hertz-Fowler, Christiane -- Blandin, Gaelle -- Renauld, Hubert -- Bartholomeu, Daniella C -- Lennard, Nicola J -- Caler, Elisabet -- Hamlin, Nancy E -- Haas, Brian -- Bohme, Ulrike -- Hannick, Linda -- Aslett, Martin A -- Shallom, Joshua -- Marcello, Lucio -- Hou, Lihua -- Wickstead, Bill -- Alsmark, U Cecilia M -- Arrowsmith, Claire -- Atkin, Rebecca J -- Barron, Andrew J -- Bringaud, Frederic -- Brooks, Karen -- Carrington, Mark -- Cherevach, Inna -- Chillingworth, Tracey-Jane -- Churcher, Carol -- Clark, Louise N -- Corton, Craig H -- Cronin, Ann -- Davies, Rob M -- Doggett, Jonathon -- Djikeng, Appolinaire -- Feldblyum, Tamara -- Field, Mark C -- Fraser, Audrey -- Goodhead, Ian -- Hance, Zahra -- Harper, David -- Harris, Barbara R -- Hauser, Heidi -- Hostetler, Jessica -- Ivens, Al -- Jagels, Kay -- Johnson, David -- Johnson, Justin -- Jones, Kristine -- Kerhornou, Arnaud X -- Koo, Hean -- Larke, Natasha -- Landfear, Scott -- Larkin, Christopher -- Leech, Vanessa -- Line, Alexandra -- Lord, Angela -- Macleod, Annette -- Mooney, Paul J -- Moule, Sharon -- Martin, David M A -- Morgan, Gareth W -- Mungall, Karen -- Norbertczak, Halina -- Ormond, Doug -- Pai, Grace -- Peacock, Chris S -- Peterson, Jeremy -- Quail, Michael A -- Rabbinowitsch, Ester -- Rajandream, Marie-Adele -- Reitter, Chris -- Salzberg, Steven L -- Sanders, Mandy -- Schobel, Seth -- Sharp, Sarah -- Simmonds, Mark -- Simpson, Anjana J -- Tallon, Luke -- Turner, C Michael R -- Tait, Andrew -- Tivey, Adrian R -- Van Aken, Susan -- Walker, Danielle -- Wanless, David -- Wang, Shiliang -- White, Brian -- White, Owen -- Whitehead, Sally -- Woodward, John -- Wortman, Jennifer -- Adams, Mark D -- Embley, T Martin -- Gull, Keith -- Ullu, Elisabetta -- Barry, J David -- Fairlamb, Alan H -- Opperdoes, Fred -- Barrell, Barclay G -- Donelson, John E -- Hall, Neil -- Fraser, Claire M -- Melville, Sara E -- El-Sayed, Najib M -- AI43062/AI/NIAID NIH HHS/ -- R01 AI043062/AI/NIAID NIH HHS/ -- U01 AI043062/AI/NIAID NIH HHS/ -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2005 Jul 15;309(5733):416-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK. mb4@sanger.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16020726" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/metabolism ; Animals ; Antigenic Variation ; Antigens, Protozoan/chemistry/genetics/immunology ; Carbohydrate Metabolism ; Chromosomes/genetics ; Cytoskeleton/chemistry/genetics/physiology ; Ergosterol/biosynthesis ; Genes, Protozoan ; *Genome, Protozoan ; Glutathione/*analogs & derivatives/metabolism ; Glycosylphosphatidylinositols/biosynthesis ; Humans ; Lipid Metabolism ; Molecular Sequence Data ; Protein Transport ; Protozoan Proteins/chemistry/*genetics/metabolism ; Pseudogenes ; Purines/metabolism ; Pyrimidines/biosynthesis ; Recombination, Genetic ; *Sequence Analysis, DNA ; Spermidine/*analogs & derivatives/metabolism ; Trypanosoma brucei brucei/chemistry/*genetics/immunology/metabolism ; Trypanosomiasis, African/parasitology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-27
    Description: This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18704 , Increment 21/22 Science Symposium; 2-3 Sept. 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: NASA created a new approach for human system integration and human performance standards. NASA created two documents a standard and a reference handbook. The standard is titled NASA Space Flight Human-System Standard (SFHSS) and consists of two-volumes: Volume 1- Crew Health This volume covers standards needed to support astronaut health (medical care, nutrition, sleep, exercise, etc.) Volume 2 Human Factors, Habitability and Environmental Health This volume covers the standards for system design that will maintain astronaut performance (ie., environmental factors, design of facilities, layout of workstations, and lighting requirements). It includes classic human factors requirements. The new standards document is written in terms so that it is applicable to a broad range of present and future NASA systems. The document states that all new programs prepare system-specific requirements that will meet the general standards. For example, the new standard does not specify a design should accommodate specific percentiles of a defined population. Rather, NASA-STD-3001, Volume 2 states that all programs shall prepare program-specific requirements that define the user population and their size ranges. The design shall then accommodate the full size range of those users. The companion reference handbook, Human Integration Design Handbook (HIDH), was developed to capture the design consideration information from NASA-STD-3000, and adds spaceflight lessons learned, gaps in knowledge, example solutions, and suggests research to further mature specific disciplines. The HIDH serves two major purposes: HIDH is the reference document for writing human factors requirements for specific systems. HIDH contains design guidance information that helps insure that designers create systems which safely and effectively accommodate the capabilities and limitations of space flight crews.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19427 , NASA Human Research Program Investigator''s Workshop; Feb 03, 2010 - Feb 05, 2010; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The Habitability & Environmental Factors and Space Medicine Divisions have developed the Space Flight Human System Standard (SFHSS) (NASA-STD-3001) to replace NASA-STD-3000 as a new NASA standard for all human spaceflight programs. The SFHSS is composed of 2 volumes. Volume 1, Crew Health, contains medical levels of care, permissible exposure limits, and fitness for duty criteria, and permissible outcome limits as a means of defining successful operating criteria for the human system. Volume 2, Habitability and Environmental Health, contains environmental, habitability and human factors standards. Development of the Human Integration Design Handbook (HIDH), a companion to the standard, is currently under construction and entails the update and revision of NASA-STD-3000 data. This new handbook will, in the fashion of NASA STD-3000, assist engineers and designers in appropriately applying habitability, environmental and human factors principles to spacecraft design. Organized in a chapter-module-element structure, the HIDH will provide the guidance for the development of requirements, design considerations, lessons learned, example solutions, background research, and assist in the identification of gaps and research needs in the disciplines. Subject matter experts have been and continue to be solicited to participate in the update of the chapters. The purpose is to build the HIDH with the best and latest data, and provide a broad representation from experts in industry, academia, the military and the space program. The handbook and the two standards volumes work together in a unique way to achieve the required level of human-system interface. All new NASA programs will be required to meet Volumes 1 and 2. Volume 2 presents human interface goals in broad, non-verifiable standards. Volume 2 also requires that each new development program prepare a set of program-specific human factors requirements. These program-specific human and environmental factors requirements must be verifiable and tailored to assure the new system meets the Volume 2 standards. Programs will use the HIDH to write their verifiable program-specific requirements.
    Keywords: Aerospace Medicine
    Type: Department of Defense Human Factors Engineering meeting; May 14, 2007 - May 17, 2007; Portsmouth, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: The Sensorimotor Risk Standing Review Panel (SRP) met at the NASA Johnson Space Center on October 4-6, 2009 to discuss the areas of future research targeted by the Human Health Countermeasures (HHC) Element of the Human Research Program (HRP). Using evidence-based knowledge as a background for risks, NASA had identified gaps in knowledge to address those risks. Ongoing and proposed tasks were presented to address the gaps. The charge to the Sensorimotor Risk SRP was to review the gaps, evaluate whether the tasks addressed these gaps and to make recommendations to NASA s HRP Science Management Office regarding the SRP's review. The SRP was requested to evaluate the practicality of the proposed efforts in light of the realistic demands placed on the HRP. In short, all tasks presented in the Integrated Research Plan (IRP) should address specific risks related to the challenges faced by the astronauts as a result of prolonged exposure to microgravity. All tasks proposed to fill the gaps in knowledge should provide applied, translational data necessary to address the specific risks. Several presentations were made to the SRP during the site visit and the SRP spent sufficient time to address the panel charge, either as a group or in separate sessions. The SRP made a final debriefing to the HRP Program Scientist. Taking the evidence and the risk as givens, the SRP reached the following conclusions: 1) the panel is very supportive of and endorses the present activities of the Sensorimotor Risk; and the panel is likewise supportive of the gaps and associated tasks in the IRP; 2) overall, the tasks addressed the gaps in the IRP; 3) there were some gaps and tasks that merit further enhancement and some new gaps/tasks that the SRP recommends.
    Keywords: Aerospace Medicine
    Type: JSC-CN-19459
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Maximal power output occurs when subjects perform ballistic exercises using loads of ~30-50% of one-repetition maximum (1-RM). However, performing 1-RM testing prior to power measurement requires considerable time, especially when testing involves multiple exercises. Maximal isometric force (MIF), which requires substantially less time to measure than 1-RM, might be an acceptable alternative for determining the optimal load for power testing. PURPOSE: To determine the optimal load based on MIF for maximizing dynamic power output during leg press and bench press exercises. METHODS: Twenty healthy volunteers (12 men and 8 women; mean +/- SD age: 31+/-6 y; body mass: 72 +/- 15 kg) performed isometric leg press and bench press movements, during which MIF was measured using force plates. Subsequently, subjects performed ballistic leg press and bench press exercises using loads corresponding to 20%, 30%, 40%, 50%, and 60% of MIF presented in randomized order. Maximal instantaneous power was calculated during the ballistic exercise tests using force plates and position transducers. Repeated-measures ANOVA and Fisher LSD post hoc tests were used to determine the load(s) that elicited maximal power output. RESULTS: For the leg press power test, six subjects were unable to be tested at 20% and 30% MIF because these loads were less than the lightest possible load (i.e., the weight of the unloaded leg press sled assembly [31.4 kg]). For the bench press power test, five subjects were unable to be tested at 20% MIF because these loads were less than the weight of the unloaded aluminum bar (i.e., 11.4 kg). Therefore, these loads were excluded from analysis. A trend (p = 0.07) for a main effect of load existed for the leg press exercise, indicating that the 40% MIF load tended to elicit greater power output than the 60% MIF load (effect size = 0.38). A significant (p . 0.05) main effect of load existed for the bench press exercise; post hoc analysis indicated that the effect of load on power output was: 30% 〉 40% 〉 50% = 60%. CONCLUSION: Loads of 40% and 30% of MIF elicit maximal power output during dynamic leg presses and bench presses, respectively. These findings are similar to those obtained when loading is based on 1-RM.
    Keywords: Aerospace Medicine
    Type: JSC-CN-17246 , JSC-CN-18272 , 56th Annual Meeting of the American College of Sports and Medicine; May 27, 2009 - May 30, 2009; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: This viewgraph presentation reports on the review and re-issuance of the NASA Space Flight Human System Standard, Volume 2, and the Human Integration Design Handbook. These standards were last updated in 1995. The target date for the release is September 2009.
    Keywords: Aerospace Medicine
    Type: JSC-CN-17767 , Human Research Program Investigators'' Workshop; Feb 02, 2009 - Feb 04, 2009; League City, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...