ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1977-08-01
    Print ISSN: 1438-387X
    Electronic ISSN: 1438-3888
    Topics: Biology
    Published by BioMed Central
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2006-05-01
    Description: The objectives of this study were to improve the dimensional stability of medium-density fibreboard (MDF) by heat treatment and to determine the effects of the treatment on the mechanical properties and vertical density profile of the panels. MDF panels were produced from untreated fibres and fibres treated at two different temperatures (150 and 180°C) for 15, 30 and 60 min. Panels produced from heat-treated fibres showed an important reduction in thickness swelling and water absorption after water soaking. Linear expansion and contraction were not improved by the treatment. Thickness swelling after repeated cycles of adsorption and desorption increased, while thickness shrinkage under the same conditions was not changed by the treatment. The springback of panels after repeated cycles of adsorption and desorption was not improved, either. Statistical analyses did not show significant differences in the modulus of rupture, modulus of elasticity and internal bond strength of panels following heat treatment. No significant effect was found for the vertical density profile of panels following heat treatment, although the profiles for panels produced from heat-treated fibres were flatter than those produced from untreated fibres.
    Print ISSN: 0018-3830
    Electronic ISSN: 1437-434X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2006-05-01
    Description: Properties of medium density fiberboard (MDF) panels in relation to wood and fiber characteristics were investigated. Laboratory MDF panels were manufactured from raw fiber materials from black spruce [Picea mariana (Mill.) BSP.], three hybrid poplar clones (Populus spp.), two exotic larch (Larix gmelinii and Larix sibirica), and a mix of spruce, pine, and fir wood chips. The panels were evaluated for modulus of rupture (MOR), modulus of elasticity (MOE), internal bond (IB), linear expansion (LE), thickness swelling (TS), and water absorption (WA). These properties were analyzed as response variables. As predictor variables, various wood and fiber characteristics were measured, including wood density, pH, base buffering capacity and fiber coarseness. Multiple linear regression analysis was performed to develop functional relationships between panel properties (response variables) and wood fiber characteristics (predictor variables). Ten dummy variables were created and incorporated into the analysis to examine the effects of wood species or type on MDF panel properties. MOR was negatively related to arithmetic fine percentage. MOE was negatively affected by the percentage of small particles (〉200 mesh) and wood pH. IB strength was negatively related to arithmetic fine percentage and fiber pH, but positively related to the percentage of small particles (〉200 mesh). Wood density affected LE. TS was negatively affected by arithmetic mean fiber length. Arithmetic mean fiber width had a negative effect on panel WA. The presence of dummy variables in the models for MOE, IB and LE indicates that wood fiber characteristics other than those measured in this study significantly affected these panel properties. The study indicates that the refining process can play a significant role in manipulating MDF panel properties.
    Print ISSN: 0018-3830
    Electronic ISSN: 1437-434X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2005-01-01
    Description: Strength properties and dimensional stability of medium-density fiberboard (MDF) panels made from black spruce (Picea mariana [Mill.] BSP.) 0–20, 21–40, and over 40 year old fiber were studied. An analysis of covariance (ANCOVA) was performed to examine the differences in modulus of rupture (MOR), modulus of elasticity (MOE), and thickness swell (TS) of the three types of panels, while panel density was treated as a covariate in order to adjust the mean values that were partly attributed to panel density. The results indicate that MOR, internal bond (IB), and water absorption of MDF panels made from 0–20 year old fiber, which contained 100% juvenile wood, were significantly superior to those of panels made from 21–40 and over 40 year old fiber; but linear expansion (LE) of MDF panels made from 0–20 year old fiber was significantly larger than that of panels from the other two age classes. The differences in MOR, IB, water absorption, and LE between panels made from 21–40 and over 40 year old fiber were not significant. The comparisons of panel MOE and TS were relatively dependent on panel density due to existence of interactions among the three age groups.
    Print ISSN: 0018-3830
    Electronic ISSN: 1437-434X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-03-01
    Description: Wood polymer nanocomposites were prepared from solid aspen wood, water-soluble melamine-urea-formaldehyde (MUF) resin, and silicate nanoclays. The nanofillers were ground with a ball-mill before being mixed with the MUF resin and impregnated into the wood. The water-soluble prepolymer was mixed with the nanoclays at a mixing speed of 3050 rpm for 20 min to form impregnation solutions. Wood was impregnated with resin, which polymerized in situ under certain conditions. The physical and mechanical properties of the composite and the effect of ball-milling treatment of nanofillers on these properties were investigated. Significant improvements in physical and mechanical properties, such as density, surface hardness, and modulus of elasticity, were obtained for specimens impregnated with MUF resin and nanoclay-MUF resin mixtures. Ball-mill treatment favors dispersion of the nanofillers into the wood, but also appears to interfere with particle-resin adhesion.
    Print ISSN: 0018-3830
    Electronic ISSN: 1437-434X
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by De Gruyter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...