ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Membrane  (1)
  • 2005-2009
  • 1980-1984  (1)
  • 1970-1974
  • 1955-1959
  • 1
    ISSN: 1432-072X
    Keywords: Schizosaccharomyces pombe ; Cell wall ; Membrane ; Acid phosphatase ; Freeze preparations ; SEM ; TEM
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to study the ultrastructure of the cell surface and plasma membrane of Schizosaccharomyces pombe as a function of growth conditions we investigated exponential and stationary phase cells grown in rich and minimal medium. Electron microscopic preparation techniques based on rapid cryofixation (without cryoprotectants) were used. The intramembraneous aspects of the plasma membrane were described by freeze fracturing. For the first time the dynamic surface structures could be directly analyzed by freeze drying in the scanning electron microscope and in thin section of freeze substituted samples. This preparation techniques reveal hair-like structures on the surface of yeast cells. The hairs of cells grown in the rich medium are longer than those grown in the minimal medium. A mutant defective in the structure of a cell surface galactomannoprotein (acid phosphatase) reveals (under conditions of maximal acid phosphatase expression) a cell surface structure that differs from the wild type. It is likely that the hairs represent the peripheral galactomannan layer or part of it. On the membrane fracture faces the number, shape, distribution and state of aggregation of the intramembraneous particles are different between membranes of growing and non-growing cells and between cells grown under different physiological conditions. In the minimal medium corresponding periodical structures on the plasmic and exoplasmic fracture faces were observed, which clearly differ between exponential and stationary phase cells. The number, length and depth of plasma membrane invaginations increase as the cells go from the exponential phase to the stationary phase. Short and flattened invaginations are filled with thin periodic structures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...