ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (4)
  • Hindawi
  • 2005-2009  (2)
  • 1985-1989  (3)
Collection
Years
Year
  • 1
    Publication Date: 2006-05-13
    Description: The nature of pulse propagation through a material with a negative value of the group velocity has been mysterious, as simple models seem to predict that pulses will propagate "backward" through such a material. Using an erbium-doped optical fiber and measuring the time evolution of the pulse intensity at many points within the fiber, we demonstrate that the peak of the pulse does propagate backward inside the fiber, even though the energy flow is always in the forward direction.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gehring, George M -- Schweinsberg, Aaron -- Barsi, Christopher -- Kostinski, Natalie -- Boyd, Robert W -- New York, N.Y. -- Science. 2006 May 12;312(5775):895-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Optics, University of Rochester, Rochester, NY 14627, USA. gehring@optics.rochester.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16690861" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-06-13
    Description: DNA methylation is an epigenetic mark associated with transposable element silencing and gene imprinting in flowering plants and mammals. In plants, imprinting occurs in the endosperm, which nourishes the embryo during seed development. We have profiled Arabidopsis DNA methylation genome-wide in the embryo and endosperm and found that large-scale methylation changes accompany endosperm development and endosperm-specific gene expression. Transposable element fragments are extensively demethylated in the endosperm. We discovered new imprinted genes by the identification of candidates associated with regions of reduced endosperm methylation and preferential expression in endosperm relative to other parts of the plant. These data suggest that imprinting in plants evolved from targeted methylation of transposable element insertions near genic regulatory elements followed by positive selection when the resulting expression change was advantageous.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886585/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886585/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gehring, Mary -- Bubb, Kerry L -- Henikoff, Steven -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2009 Jun 12;324(5933):1447-51. doi: 10.1126/science.1171609.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute (HHMI), Fred Hutchinson Cancer Research Center (FHCRC), 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19520961" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Arabidopsis/*embryology/*genetics/growth & development ; Crosses, Genetic ; *DNA Methylation ; *DNA Transposable Elements ; DNA, Plant/genetics/metabolism ; Epigenesis, Genetic ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genes, Plant ; Genome, Plant ; *Genomic Imprinting ; *Repetitive Sequences, Nucleic Acid ; Seeds/*genetics/growth & development ; Selection, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1987-06-05
    Description: The body plan of Drosophila is determined to a large extent by homeotic genes, which specify the identity and spatial arrangement of the body segments. Homeotic genes share a characteristic DNA segment, the homeo box, which encodes a defined domain of the homeotic proteins. The homeo domain seems to mediate the binding to specific DNA sequences, whereby the homeotic proteins exert a gene regulatory function. By isolating the normal Antennapedia gene, fusing its protein-coding sequences to an inducible promoter, and reintroducing this fusion gene into the germline of flies, it has been possible to transform head structures into thoracic structures and to alter the body plan in a predicted way. Sequence homologies suggest that similar genetic mechanisms may control development in higher organisms.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gehring, W J -- New York, N.Y. -- Science. 1987 Jun 5;236(4806):1245-52.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2884726" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Blastoderm/ultrastructure ; Drosophila/embryology/*genetics ; Embryonic and Fetal Development ; *Genes, Homeobox ; Mutation ; Ovum/ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1988-01-08
    Description: Segmentation genes control cell identities during early pattern formation in Drosophila. One of these genes, fushi tarazu (ftz), is now shown also to control cell fate during neurogenesis. Early in development, ftz is expressed in a striped pattern at the blastoderm stage. Later, it is transiently expressed in a specific subset of neuronal precursor cells, neurons (such as aCC, pCC, RP1, and RP2), and glia in the developing central nervous system (CNS). The function of ftz in the CNS was determined by creating ftz mutant embryos that express ftz in the blastoderm stripes but not in the CNS. In the absence of ftz CNS expression, some neurons appear normal (for example, the aCC, pCC, and RP1), whereas the RP2 neuron extends its growth cone along an abnormal pathway, mimicking its sibling (RP1), suggesting a transformation in neuronal identity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Doe, C Q -- Hiromi, Y -- Gehring, W J -- Goodman, C S -- New York, N.Y. -- Science. 1988 Jan 8;239(4836):170-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biological Sciences, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2892267" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Drosophila melanogaster/*embryology/genetics ; Gene Expression Regulation ; Genes, Homeobox ; Morphogenesis ; Nervous System/*embryology ; Neuroglia/cytology/physiology ; Neurons/cytology/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1987-01-01
    Print ISSN: 0142-0453
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...