ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB4006, doi:10.1029/2004GB002445.
    Description: We report iron measurements for water column and aerosol samples collected in the Sargasso Sea during July-August 2003 (summer 2003) and April-May 2004 (spring 2004). Our data reveal a large seasonal change in the dissolved iron (dFe) concentration of surface waters in the Bermuda Atlantic Time-series Study region, from ∼1–2 nM in summer 2003, when aerosol iron concentrations were high (mean 10 nmol m−3), to ∼0.1–0.2 nM in spring 2004, when aerosol iron concentrations were low (mean 0.64 nmol m−3). During summer 2003, we observed an increase of ∼0.6 nM in surface water dFe concentrations over 13 days, presumably due to eolian iron input; an estimate of total iron deposition over this same period suggests an effective solubility of 3–30% for aerosol iron. Our summer 2003 water column profiles show potentially growth-limiting dFe concentrations (0.02–0.19 nM) coinciding with a deep chlorophyll maximum at 100–150 m depth, where phytoplankton biomass is typically dominated by Prochlorococcus during late summer.
    Description: Funding for this work was provided by the U.S. National Science Foundation (OCE-0222053 to P. N. S., OCE-0222046 to T. M. C., and OCE-0241310 to D. J. M.), the U.S. National Aeronautics and Space Administration (NAG5-11265 to D. J. M.), the Australian Research Council (DP0342826 to A. R. B.), the Antarctic Climate and Ecosystems Cooperative Research Center, and the H. Unger Vetlesen Foundation.
    Keywords: Atmospheric deposition ; Iron ; Sargasso Sea
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: text/plain
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 8 (2007): Q06015, doi:10.1029/2006GC001567.
    Description: Drilling during ODP Leg 209, dredging, and submersible dives have delineated an anomalous stretch of the Mid-Atlantic Ridge north and south of the 15°20′N Fracture Zone. The seafloor here consists dominantly of mantle peridotite with gabbroic intrusions that in places is covered by a thin, discontinuous extrusive volcanic layer. Thick lithosphere (10–20 km) in this region inhibits magma from reaching shallow levels beneath the ridge axis, thereby causing plate accretion to be accommodated by extensional faulting rather than magmatism. The bathymetry and complex fault relations in the drill-core suggest that mantle denudation and spreading are accommodated by a combination of high-displacement, rolling-hinge normal faults and secondary lower-displacement normal faults. These extensional faults must also accommodate corner flow rotation (up to 90°) of the upwelling mantle within the shallow lithosphere, consistent with remnant magnetic inclinations in denuded peridotite and gabbro from Leg 209 core that indicate up to 90° of sub-Curie-temperature rotation.
    Description: This work was funded by a grant from the Joint Oceanographic Institutions.
    Keywords: Seafloor spreading ; Ocean Drilling Program ; Nonvolcanic mid-ocean ridges ; Extensional faulting
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: Recent examinations of the chemical fluxes through convergent plate margins suggest the existence of significant mass imbalances for many key species: only 20–30% of the to-the-trench inventory of large-ion lithophile elements (LILE) can be accounted for by the magmatic outputs of volcanic arcs. Active serpentinite mud volcanism in the shallow forearc region of the Mariana convergent margin presents a unique opportunity to study a new outflux: the products of shallow-level exchanges between the upper mantle and slab-derived fluids. ODP Leg 125 recovered serpentinized harzburgites and dunites from three sites on the crests and flanks of the active Conical Seamount. These serpentinites have U-shaped rare earth element (REE) patterns, resembling those of boninites. U, Th, and the high field strength elements (HFSE) are highly depleted and vary in concentration by up to 2 orders of magnitude. The low U contents and positive Eu anomalies indicate that fluids from the subducting Pacific slab were probably reducing in nature. On the basis of substantial enrichments of fluid-mobile elements in serpentinized peridotites, we calculated very large slab inventory depletions of B (79%), Cs (32%), Li (18%), As (17%), and Sb (12%). Such highly enriched serpentinized peridotites dragged down to depths of arc magma generation may represent an unexplored reservoir that could help balance the input-output deficit of these elements as observed by Plank and Langmuir (1993, 1998) and others. Surprisingly, many species thought to be mobile in fluids, such as U, Ba, Rb, and to a lesser extent Sr and Pb, are not enriched in the rocks relative to the depleted mantle peridotites, and we estimate that only 1–2% of these elements leave the subducting slabs at depths of 10 to 40 km. Enrichments of these elements in volcanic front and behind-the-front arc lavas point to changes in slab fluid composition at greater depths.
    Description: Published
    Description: 1-24
    Description: partially_open
    Keywords: Serpentinite ; Ocean Drilling Program ; Forearc ; Mantle ; Marianas ; Subduction ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.05. Mineralogy and petrology ; 04. Solid Earth::04.04. Geology::04.04.07. Rock geochemistry ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 462 bytes
    Format: 2257702 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 5 (2004): Q09F26, doi:10.1029/2004GC000744.
    Description: We present first results of a petrographic study of hydrothermally altered peridotites drilled during Ocean Drilling Program (ODP) Leg 209 in the 15°20′N fracture Zone area on the Mid-Atlantic Ridge (MAR). We find that serpentinization is extensive at all drill sites. Where serpentinization is incomplete, phase relations indicate two major reaction pathways. One is reaction of pyroxene to talc and tremolite, and the other is reaction of olivine to serpentine, magnetite, and brucite. We interpret these reactions in the light of recent peridotite-seawater reaction experiments and compositions of fluids venting from peridotite massifs at a range of temperatures. We suggest that the replacement of pyroxene by talc and tremolite takes place at temperatures 〉350°–400°C, where olivine is stable. The breakdown of olivine to serpentine, magnetite, and brucite is favored at temperatures below 250°C, where olivine reacts faster then pyroxene. High-temperature hydrothermal fluids venting at the Logatchev and Rainbow sites are consistent with rapid reaction of pyroxene and little or no reaction of olivine. Moderate-temperature fluids venting at the Lost City site are consistent with ongoing reaction of olivine to serpentine and brucite. Many completely serpentinized peridotites lack brucite and talc because once the more rapidly reacting phase is exhausted, interaction with the residual phase will change fluid pH and silica activity such that brucite or talc react to serpentine. At two sites we see strong evidence for continued fluid flow and fluid-rock interaction after serpentinization was complete. At Site 1268, serpentinites underwent massive replacement by talc under static conditions. This reaction requires either removal of Mg from or addition of Si to the system. We propose that the talc-altered rocks are Si-metasomatized and that the source of Si is likely gabbro-seawater reaction or breakdown of pyroxene deeper in the basement. The basement at Site 1268 is heavily veined, with talc and talc-oxide-sulfide veins being the most common vein types. It appears that the systems evolved from reducing (oxygen fugacity buffered by magnetite-pyrrhotite-pyrite and lower) to oxidizing (dominantly hematite). We propose that this transition is indicative of high fluid flux under retrograde conditions and that the abundance of hematite may relate to the Ca-depleted nature of the basement that prevents near-quantitative removal of seawater sulfate by anhydrite precipitation. At site 1272 we find abundant iowaite partly replacing brucite. While this is the first report of iowaite from a mid-ocean ridge setting, its presence indicates, again, fairly oxidizing conditions. Our preliminary results indicate that peridotite-seawater and serpentinite-seawater interactions can take place under a wider range of temperature and redox conditions than previously appreciated.
    Description: This research used data and/or samples supplied by the Ocean Drilling Program (ODP). ODP is sponsored by the U.S. National Science Foundation (NSF) and participating countries under management of Joint Oceanographic Institutions (JOI), Inc.
    Keywords: Hydrothermal system ; Ocean Drilling Program ; Oceanic crust ; Serpentinite ; Water-rock interaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 834562 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C06026, doi:10.1029/2005JC003289.
    Description: Satellite remote sensing estimates of surface chlorophyll, temperature, wind speed, and sea ice cover are examined in the region of the Southern Ocean Iron Experiment (SOFeX). Our objectives are to place SOFeX into a regional context and highlight regional mesoscale spatial and monthly temporal variability. SOFeX fertilized two patches with iron, one south of the Antarctic Polar front (PF) and one north of the PF but south of the Subantarctic Front (SAF). Satellite observable phytoplankton blooms developed in both patches. The spring sea-ice retreat near the south patch site was delayed in the 2001-2002 season, in turn delaying the naturally occurring, modest spring bloom in this region. Ambient surface chlorophyll concentrations for the area surrounding the southern patch during January 2002 are low (mean 0.26 mg/m3) compared with climatological January values (0.42 mg/m3). Regions east and west at similar latitudes exhibited higher mean chlorophyll concentrations (0.79 and 0.74 mg/m3, respectively). These modest phytoplankton blooms were likely stimulated by melting sea-ice via changes in the light-mixing regime and release of iron, and were smaller in magnitude than the iron-induced bloom within the SOFeX southern patch (〉 3 mg/m3). Iron inputs from melting ice may drive much of the natural spatial and temporal variability within the seasonal ice zone. Mean chlorophyll concentrations surrounding the SOFeX northern patch site were similar to climatological values during the SOFeX season. The northern patch was stretched into a long, thin filament along the southern boundary of the SAF, likely increasing the mixing/dilution rate with surrounding waters.
    Description: S. Doney and K. Moore were supported by NASA grant NAG5-12520 from the NASA Ocean Biogeochemistry Program.
    Keywords: SeaWiFS ; Iron ; Marginal ice zone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...