ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 111 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The attenuation of the Lg waves for the Granada Basin has been analysed. This study has been done in the frequency domain, eliminating the influences of the source, the instrumental response and the local site response, using the Reverse Two-Station Method (RTSM). The average QLg value for the whole region, obtained for all the paths is: QLg= (105 ± 25)∞(0.93±0.14).The average values of QLg determined for this region are lower than those corresponding to other areas of Spain, and are similar to those of coda-Q obtained using local coda and single scattering methods, for some determined focal depth and for some lapse times (50 and 70 s). Small differences of the attenuation are observed between paths that cross the central part and the edges of the basin. A detailed analysis showed that the E-W and the N-S directions have differences between attenuation values; in the E-W direction Q0Lg (the QLg value at 1 Hz of frequency) is 131 ± 7 and in the N-S one Q0Lg is 88 ± 21. The frequency dependence is similar to the average QLg value. These values may indicate that the attenuation of the Lg waves, at least for this region, may not be affected by only the anelastic dissipation, but also by scattering process. The N-S direction is normal to the dominating fault systems and seems to provide a greater scattering effect than the E-W direction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 108 (1992), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: A rigorous study of velocity dispersion of surface waves generated by teleseismic events propagating across the Iberian Peninsula and traversing main geological units, has been carried out from a set of selected analogue data, as digital records have only become available recently. Dispersed seismic signals have been obtained over a period of 16 years, between 1967 and 1982, at the five Iberian stations having long-period instruments. In our study, we have considered many earthquakes thus obtaining a fairly good path coverage of most of the peninsula for two-station Rayleigh wave velocity measurements. In all cases, the approach azimuths of the wavefronts were carefully checked. Several digital filtering techniques have been employed to remove the effects of multipathing and modal contamination, and to isolate the fundamental mode from Rayleigh wavetrains. Thus, we have obtained good estimates for both phase and group velocities. A time-variable filter has reduced the influence of noise and removed higher mode interference. Multiple filtering is then used to compute group velocity. Frequency-domain Wiener deconvolution is used to compute the interstation phase velocity. The determined average Rayleigh wave velocities reveal differences in the propagation conditions of the seismic energy across the peninsula. A mapping of velocities for various periods of reference, together with a mapping of errors in velocity, are the basis for obtaining the Rayleigh wave velocity distribution in the peninsula. Theoretical 2-D layered earth models are obtained by joint inversion of phase and group velocity dispersion curves using the stochastic inverse operator. In our inversion scheme, we use velocities corrected for anelastic effects. Finally, a 3-D mapping of S velocity is performed. This study shows important regional features of the deep structure of Iberia; we see small lateral inhomogeneities and also two low-velocity layers: one with shear velocities usually ranging from 4.23 to 4.31 km s-1 directly under the Moho, and another, the asthenosphere, with a negative velocity gradient for depths between 81 and 181 km, terminated at the bottom by a sharp discontinuity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 103 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Coda wave analysis is used to obtain frequency-dependent coda-Q values for different seismic zones of the Iberian area. Seventeen source regions around the Geophysical Observatory of Toledo and some four seismic events per region have been considered in this study. We have used an iterative Fourier analysis technique to see the variation of the frequency along the coda, also taking into account the instrument response. We have applied a suitable criterion to select the predominant frequency every 5 s along the coda. The variation of the frequency with time for each region is averaged with a second-degree polynomial, which is compared to master curves obtained directly from the response of the seismograph system, in order to determine the elastic quality factor Q. It has been observed that the frequency-time curves thus obtained are better explained if Q is considered as an exponential function of the peak frequency. The main result of this work is a set of 1 Hz Q values with a clear indication that frequency dependence of Q exists, although the bandwidth from which our conclusions are reached is only 0.5–1 Hz. The coda-Q values obtained for the tectonically most stable areas (north Spain) appear somewhat higher, Q 〉 300, than those corresponding to the seismic active zones (south Spain), Q 〈 250. Thus, a clear relationship is established between Q values and the two major tectonic provinces in Iberia. These results may be helpful for seismic risk and earthquake engineering purposes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 100 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Several filtering techniques have been used to remove the effects of multipathing and modal contamination, and to isolate the fundamental mode from Rayleigh wavetrains. Group velocity data are obtained by means of the multiple-filter technique. A time-variable filter has allowed the influence of noise as well as the interference produced by higher modes to be removed. Multiple filtering is then used again to compute group velocities at each station. the interstation group velocity for the fundamental mode Rayleigh wave is estimated according to the velocities at two stations. Frequency-domain Wiener deconvolution is used to compute the phase velocity between two stations. the well-known three-station method is applied to correct the distances travelled by the waves across the array and therefore to determine interstation phase and group velocities in a more accurate manner. On the other hand, lateral refraction at the Atlantic continental edge of the Peninsula is also studied. Phase velocities are corrected for the anelastic effect. Inversion of the interstation Rayleigh wave phase velocities is then made in accordance with generalized inversion theory to obtain theoretical 2-D layered earth models. In this paper, these methods are applied to Rayleigh waves generated by teleseismic events propagating across the Iberian Peninsula and recorded at WWSSN stations. As a consequence, new and principal features for the Iberian lithosphere-asthenosphere system are obtained. A very interesting feature of the the Iberian lithosphere was found-a low-velocity layer directly under the Moho, between 39 and 64 km depth, with shear velocities ranging from 4.12 to 4.37 km s-1. the Iberian asthenosphere, which lies between 100 and 180km depth, is not an homogeneous layer and shows a negative velocity gradient from top to bottom together with a sudden increase in shear velocity beneath the low-velocity zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 100 (1990), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Several attenuation studies have established a frequency dependence law of the anelastic attenuation factor Q in the form Q=Qo(f/fo)v for the approximate 1–10 Hz frequency range. We propose a method that leads to the determination of Qo, which is a function of the reference frequency fo, and the real exponent v with a single station. to carry out the problem we determine a set of master curves as a function of v. We discuss the method, and the different features of the master curves, when it is applied to the complicated regions of the Iberian Peninsula and to several instruments with different responses. Using this new method and the seismographic stations available in the Iberian Peninsula we have mapped iso-Q0 lines, at a reference frequency of 1 Hz, applying inversion methods. the Q0 values determined for Iberia vary between about 100 and about 600. Values close to 100 correspond to the southern part of Iberia. In general, Qo values increase from south to north with values about 600 near the NW part of Iberia. the Pyrenees Mountains and adjacent areas present Q0 values between about 200 and about 350. These results suggest a strong Q0 lateral variation in Iberia. A considerable frequency dependence of coda-Q has also been determined. the v values vary between 0.3 and 0.8. the Q0 values obtained in the Iberian Peninsula show very good agreement with several Q0 values obtained in other regions of the world. Comparison between the iso-Q0 lines and other geophysical parameters, like regional variations of Pn velocities, heat flow, isoseimal intensity distribution and crustal thickness, indicates that lower Q0 values are associated with higher isoseismal intensity attenuation, higher heat flow, lower Pn velocities and thinner crust.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-11-04
    Description: An objective regionalization of the Mediterranean basin is derived from a tomographic study based on the fundamental mode of Rayleigh waves. The database is formed by seismic wavetrains recorded at very-broadband stations belonging to MedNet and other cooperative stations, located in the Mediterranean area. The data treatment consists of application of spectral filtering techniques aimed to determine path-averaged group velocities, computation of local group velocity maps for some periods and classification of the studied area in several homogeneous regions according to Principal Component Analysis (PCA) and Average Linkage (AL) algorithms. Finally, the group velocity dispersion curves representing each homogeneous region are compared and possible correlation between these regions and seismotectonic and structural characteristics are discussed.
    Description: JCR Journal
    Description: open
    Keywords: Mediterranean basin ; Rayleigh waves ; local group velocities ; clustering algorithms ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 4360548 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-10-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-02-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-01-01
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2009-12-30
    Print ISSN: 1363-2469
    Electronic ISSN: 1559-808X
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Published by Taylor & Francis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...