ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Exobiology  (14)
  • 2005-2009  (14)
  • 1990-1994
  • 1
    Publication Date: 2018-06-12
    Description: A novel, psychrotolerant, facultative anaerobe, strain FTRl, was isolated from Pleistocene ice from the permafrost tunnel in Fox, Alaska. Gram-positive, motile, rod-shaped cells were observed with sizes 0(raised dot)6-0(raised dot)7 x 0(raised dot)9-1(raised dot)5 microns. Growth occurred within the pH range 6(raised dot)5-9(raised dot)5 with optimum growth at pH 7(raised dot)3-7(raised dot)5. The temperature range for growth of the novel isolate was 0-28 C and optimum growth occurred at 24 C. The novel isolate does not require NaCl; growth was observed between 0 and 5% NaCl with optimum growth at 0(raised dot)5% (w/v). The novel isolate was a catalase-negative chemoorganoheterotroph that used as substrates sugars and some products of proteolysis. The metabolic end products were acetate, ethanol and CO2. Strain FTRl was sensitive to ampicillin, tetracycline, chloramphenicol, rifampicin, kanamycin and gentamicin. 16s rRNA gene sequence analysis showed 99(raised dot)8% similarity between strain FTR1 and Carnobacterium alterfunditum, but DNA-DNA hybridization between them demonstrated 39 plus or minus 1(raised dot)5% relatedness. On the basis of genotypic and phenotypic characteristics, it is proposed that strain FTRl (= ATCC BAA-754T= JCM 12174T=CIP 108033) be assigned to the novel species Carnobacterium pleistocenium sp. nov.
    Keywords: Exobiology
    Type: International Journal of Systematic and Evolutionary Microbiology; Volume 55; 473-478
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath and the ice crusts of icy moons of Jupiter and Saturn. The importance of study alkaliphilic microorganisms for astrobiology was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology. The study of halophilic microorganisms was started from work with saline soils and lakes, and one of the record of good growth for Haloferax mediterranei was shown at 30 percent NaC1. Although alkali-tolerant nitrifying bacteria had previously been reported, the first described alkaliphilic microorganism was the bacterium Streptococcus faecalis. Halophilic and alkaliphilic forms are relevant to conditions that might be found in closed impact basins and craters on Mars filled with evaporite deposits. The first obligately acidophilic bacterium described was Acidithiobacillus ferrooxydans (formally Thiobacillus ferrooxidans). Later thermophilic lithotrophic acidophiles were found, and the hyperacidophilic moderately thermophilic species of the genus Picrophilus were found to grow at negative pH. The epoch of study of thermophilic microorganisms starts with the discovery of Thermus aquaticus, and presently the maximum temperature for growth at 113 C was found for Pyrolobus fumarii. The microorganisms capable of growth at high temperatures and in hyperacidic environments on Earth are good analogs for life that might be able to survive in hot acidic droplets in the upper regimes of the atmosphere of Venus. The study of barophiles was made possible by engineering achievements leading to the development of the submersible crafts used to study the Black Smokers of the Deep-sea Hydrothermal vents. The first described radioresistant bacterium Deinococcus radiodurans can survive ionizing irradiation and other DNA-damaging assaults at doses that are lethal to all other organisms. These microbes are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath icy crusts Europa and Enceladus. This paper presents ESEM and FESEM images showing intact microbes preserved in the deep ice cores extracted from just above Lake Vostok, Antarctica that are considered analogs for life forms that might survive on comets and icy moons.
    Keywords: Exobiology
    Type: SPIE Optics and Photonics 2007; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The fact that organotrophic organisms on Earth use L-amino acids and D-sugars as an energy source is recognized as one of the universal features of life. The chirality of organic molecules with asymmetric location of group- radicals was described a relatively long time ago. In 1848, Louis Pasteur discovered chiral molecules when he investigated the way that crystals of sodium ammonium paratartrate rotated the plane of polarization of light. He found that the crystal structures represented the underlying asymmetry of molecules that existed in either lea-handed or right-handed forms (enantiomers). Pasteur observed that abiotic (chemical) processes produced mixtures with equal numbers (racemic) of the two forms but that living organisms possessed a molecular asymmetry that included only one of the enantiomers (homochirality). He speculated that the origin of the asymmetry of chiral biomolecules might hold the key to the nature of life. All of the amino acids in proteins (except for Glycine which is symmetrical) exhibit the same absolute steric configuration as L-glyceraldehyde. D-amino acids are never found in proteins, although they do exist in nature and are often found in polypeptide antibiotics. Constitutional sugars of cells, opposite to the amino acids, are the D-enantiomers, and the appearance of L-sugars in Nature is extremely rare. Notwithstanding this fact, the metabolism of some bacteria does have capability to use amino acids and sugars with alternative chirality. This property may be caused by the function of specific enzymes belonging to the class of isomerases (racemases, epimerases, isomerases, tautomerases). In our laboratory, we have investigated several anaerobic bacterial strains, and have found that some of these bacteria are capable of using D-amino acids and L-sugars. Strain BK1 is capable of growth on D-arginine, but its growth characteristics on L-arginine are approximately twice higher. Another alkaliphilic strain SCAT(sup T) (= ATCC BAA-1084(sup T)= JCM 12857(sup T) = DSM 17722(sup T) = CIP 107910(sup T)) was found to be capable of growth on L-ribose and L-arabinose. It is interesting that this strain was incapable of growth on D-arabinose, which suggests the involvement of some alternative mechanism of enzyme activity. In this paper, we describe the preliminary results of these microbiological studies and discuss some possible implications.
    Keywords: Exobiology
    Type: SPIE Paper 6209-10 , SPIE Optics and Photonics Symposium 2006: Instruments Methods and Missions for Astrobiology IX; Aug 13, 2006 - Aug 17, 2006; San Diego, CA; United States|Proceedings of SPIE; 6309
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: During the past decade, Environmental and Field Emission Scanning Electron Microscopes have been used at the NASA/Marshall Space Flight Center to investigate freshly fractured interior surfaces of a large number of different types of meteorites. Large, complex, microfossils with clearly recognizable biological affinities have been found embedded in several carbonaceous meteorites. Similar forms were notably absent in all stony and nickel-iron meteorites investigated. The forms encountered are consistent in size and morphology with morphotypes of known genera of Cyanobacteria and microorganisms that are typically encountered in associated benthic prokaryotic mats. Even though many coccoidal and isodiametric filamentous cyanobacteria have a strong morphological convergence with some other spherical and filamentous bacteria and algae, many genera of heteropolar cyanobacteria have distinctive apical and basal regions and cellular differentiation that makes it possible to unambiguously recognize the forms based entirely upon cellular dimensions, filament size and distinctive morphological characteristics. For almost two centuries, these morphological characteristics have historically provided the basis for the systematics and taxonomy of cyanobacteria. This paper presents ESEM and FESEM images of embedded filaments and thick mats found in-situ in the Murchison CM2 and Orgueil cn carbonaceous meteorites. Comparative images are also provided for known genera and species of cyanobacteria and other microbial extremophiles. Energy Dispersive X-ray Spectroscopy (EDS) studies indicate that the meteorite filaments typically exhibit dramatic chemical differentiation with distinctive difference between the possible microfossil and the meteorite matrix in the immediate proximity. Chemical differentiation is also observed within these microstructures with many of the permineralized filaments enveloped within electron transparent carbonaceous sheaths. Elemental distributions of these embedded filaments are not consistent with recent cyanobacteria or other living or preserved microbial extremophiles that have been investigated during this research. The meteorite filaments often have nitrogen content below the sensitivity level of the EDS detector. Carbon, Sulphur, Iron or Silicon are often highly enriched and hence anomalous C/N and CIS ratios when compared with modem cyanobacteria. The meteorite forms that are unambiguously recognizable as biological filaments are interpreted as indigenous microfossils analogous to several known genera of modem cyanobacteria and associated trichomic filamentous prokaryotes.
    Keywords: Exobiology
    Type: SPIE Optics and Photonics: Optical Engineering and Application; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: No principal differences have been found between microfossils described from Cambrian and Phanerozoic and the 2000 Ma phosphorites. Numerous samples revealed diverse microbial microstructures interpreted as cyanobacterial mats consisting of filamentous (1-3 microns in diameter, 20 microns in length), coccoidal (0.8-1.0 microns) and ellipsoidal or rod-shaped microfossils (0.8 microns in diameter, around 2 microns in length) which morphologically resemble modern Microcoleus and Siphonophycus, Thiocapsa, and Rhabdoderma, respectively, reported from alkali ne or saline environment_ The sequence of the early Palaeoproterozoic events which point to a significant oxidation of the hydrosphere, including the formation of phosphorites and changes in the phosphorous cycle, mimics the sequence which was repeated at the Neoproterozoic-Cembrian transition, implying that oxidation of the terrestrial atmosphere-hydrosphere system experienced an irregular cyclic development.
    Keywords: Exobiology
    Type: SPIE Optics and Photonics: Optical Engineering and Application; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The ability to distinguish possible microfossils from recent biological contaminants is of great importance to Astrobiology. In this paper we discuss the application of the ratios of life critical biogenic elements (C/O; C/N; and C/S) as determined by Energy Dispersive X-ray Spectroscopy (EDS) to this problem. Biogenic element ratios will be provided for a wide variety of living cyanobacteria and other microbial extremophiles, preserved herbarium materials, and ancient biota from the Antarctic Ice Cores and Siberian and Alaskan Permafrost for comparison with megafossils and microfossils in ancient terrestrial rocks and carbonaceous meteorites.
    Keywords: Exobiology
    Type: SPIE Optics and Photonics: Optical Engineering and Application; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The microflora of the cryosphere of planet Earth provides the best analogs for life forms that might be found in the permafrost or polar ice caps of Mars, near the surface of the cometary nuclei, or in the liquid water beneath the ice crusts of icy moons of Jupiter and Saturn. For astrobiology the focus on the study alkaliphilic microorganisms was enhanced by the findings of abundant carbonates and carbonate globules rimmed with possibly biogenic magnetites in association with the putative microfossils in the ALH84001 meteorite. Although the ALH84001 "nanofossils" were to small and simple to be unambiguously recognized as biogenic, they stimulated Astrobiology research and studies of microbial extremophiles and biomarkers in ancient rocks and meteorites. Recent studies of CI and CM carbonaceous meteorites have resulted in the detection of the well-preserved mineralized remains of coccoidal and" filamentous microorganisms in cyanobacterial mats. Energy Dispersive X-ray Analysis has shown anomalous biogenic element ratios clearly indicating they are not recent biological contaminants. This paper reviews microbial extremophiles in context of their significance to Astrobiology and the evolution of life. Extremophilic microorganisms on Earth are models for life that might endure high radiation environments in the ice near the surface of comets or on the icy moons of Jupiter and Saturn and in the seafloor deep beneath the icy crusts of Europa and Enceladus.
    Keywords: Exobiology
    Type: SPIE Optics and Photonics: Optical Engineering and Application; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The study of a sample collected from a wind-made ice sculpture near Lake Podprudnoe, Antarctica led to the isolation of the psychrotolerant strain ISLP-3. Cells of the new isolate are vibrio-shaped that measure 0.5 x 1.0-3.0 micron in size. Growth occurs within the temperature range 5-35 C with the optimum at 22 C. Salinity range for growth is 0-2 % NaCl with the optimum at 0.25 %. The new isolate grows within a pH range from 6.0 to 9.5 with the optimum at 7.5. Strain ISLP-3 is saccharolytic, growing on the following substrates: D-glucose, D-ribose, D-fructose, D-arabinose, maltose, sucrose, D-trehalose, D-mannose, D-cellobiose, lactose, starch, chitin, triethylamine, N-acetylglucosamine, and urea. The best growth occurred on D-cellobiose. An environmental sample of pond water near a colony of the endemic species of African penguins, Spheniscus demersus, was collected in February 2008 and delivered directly to the Astrobiology laboratory at NSSTC. The microbiological study of this sample led to the isolation of two psychrotolerant strains ARHSd-7G and ARHSd-9G. Both strains are strictly anaerobic bacteria and are able to grow at high pH and low temperatures. The cells of strain ARHSd-7G are motile, vibrio-shaped, spore-forming cells. Optimal growth of this strain occurs at 30 C, 3 % NaCl, and pH 8.9. The isolate ARHSd-7G combines sugarlytic and proteolytic metabolisms, growing on some proteolysis products including peptone and yeast extract and a number of sugars. The second isolate, ARHSd-9G, exhibits thin, elongated rods that measure 0.4 x 3-5 micron. The cells are motile and spore-forming. Optimal growth of strain ARHSd-9G occurs at 30 C, 1.75 % NaCl, and pH 8.5. The strain ARHSd-9G is sugarlytic, growing well on substrates such as D-glucose, sucrose, D-cellobiose, maltose, fructose, D-mannose, and trehalose (the only exception is positive growth on yeast extract). In this report, the physiological and morphological characteristics of the novel psychrotolerant, alkaliphilic, and neutrophilic isolates from the Antarctica 2008 expedition will be discussed.
    Keywords: Exobiology
    Type: M09-0595 , M09-0642 , SPIE Optics + Photonics 2009 Conference; Aug 02, 2009 - Aug 06, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The study of samples from Antarctica 2008 and 2009 expeditions organized and successfully conducted by Richard Hoover led to the isolation of diverse anaerobic strains with psychrotolerant and psychrophilic physiology. Due to the fact that Lake Untersee has never been subject to microbiological study, this work with the samples has significant and pioneering impact to the knowledge about the biology of this unique ecosystem. Also, the astrobiological significance for the study of these ecosystems is based on new findings of ice covered water systems on other bodies of our solar system. Anaerobic psychrotolerant strain LZ-22 was isolated from a frozen sample of green moss with soils around the rhizosphere collected near Lake Zub in Antarctica. Morphology of strain LZ-22 was observed to be motile, rod shaped and spore-forming cells with sizes 1 x 5-10 micron. This new isolate is a mesophile with the maximum temperature of growth at 40C. Strain LZ-22 is able to live on media without NaCl and in media with up to 7% (w/v) NaCl. It is catalase negative and grows only on sugars with the best growth rate being on lactose. The strain is a neutrophile and grows between pH 5 and 9.0 with the optimum at 7.8. Another two strains UL7-96mG and LU-96m7P were isolated from deep water samples of Lake Untersee. Proteolytic strain LU-96m7P had a truly psychrophilic nature and refused to grow at room temperature. Sugarlytic strain UL7-96mG was found to be psychrotolerant, but its rate of growth at 3C was very high compared with other mesophiles. Two homoacetogenic psychrophilic strains A7AC-96m and AC-DS7 were isolated and purified from samples of Lake Untersee; both of them are able to grow chemolithotrophically on H2+CO2. In the presence of lactate, these strains are able to grow only at 0-18C, and growth at 22C was observed only with yeast extract stimulation. In this paper, physiological and morphological characteristics of novel psychrophilic and psychrotolerant isolates from Antarctica 2008 and 2009 expeditions will be discussed.
    Keywords: Exobiology
    Type: M09-0762 , M09-0594 , SPIE Optics + Photonics 2009 Conference; Aug 02, 2009 - Aug 06, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The early search for the amino acids on the lunar surface fines indicated such a low amount of the amino acids that it was deemed insignifi cant. While the later studies seemed to depart in some ways from the earlier results, they were not pursued. In this paper we critically ev aluate the results from the Apollo missions from the new perspective with considerations of the sensitivity of the instrumentation availabl e at the time. We discuss the possible relevance of the lunar results to the findings of the amino acids on the surfaces of other extraterrestrial bodies, such as Mars.
    Keywords: Exobiology
    Type: M09-0596 , M09-0597 , SPIE Optics and Photonics 2009; Aug 02, 2009 - Aug 06, 2009; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...