ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-7691
    Keywords: Domain decomposition ; nested dissection ; LU-factorization ; parallel computers ; MIMD
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract A multilevel algorithm is presented for direct, parallel factorization of the large sparse matrices that arise from finite element and spectral element discretization of elliptic partial differential equations. Incomplete nested dissection and domain decomposition are used to distribute the domain among the processors and to organize the matrix into sections in which pivoting is applied to stabilize the factorization of indefinite equation sets. The algorithm is highly parallel and memory efficient; the efficient use of sparsity in the matrix allows the solution of larger problems as the number of processors is increased, and minimizes computations as well as the number and volume of communications among the processors. The number of messages and the total volume of messages passed during factorization, which are used as measures of algorithm efficiency, are reduced significantly compared to other algorithms. Factorization times are low and speedups high for implementation on an Intel iPSC/860 hypercube computer. Furthermore, the timings for forward and back substitutions are more than an order-of-magnitude smaller than the matrix decomposition times.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Quantum Chemistry 48 (1993), S. 363-375 
    ISSN: 0020-7608
    Keywords: Computational Chemistry and Molecular Modeling ; Atomic, Molecular and Optical Physics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: An approximate numerical method of solving the Generalized Master Equation for a many-body problem is presented, with examples of its application. This method involves the construction from the full Hamiltonian (of the system plus the “bath”) of a set of unitary Langevin equations that combine deterministic microcanonical, stochastic canonical (heat bath), and stochastic nonthermal dynamics in a single time-integration scheme. If implemented in a representation that captures the essential physics and repeatedly run from a given initial condition, this method evaluates stochastic representatives from the actual fiber bundle of system worldlines that flow from the initial condition and, hence, numerically evaluates the path integral. © 1993 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...