ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutagenesis, Insertional  (2)
  • *Point Mutation  (1)
  • 2005-2009
  • 1990-1994  (2)
  • 1
    Publication Date: 1993-04-30
    Description: A recessive mutation was identified in a family of transgenic mice that resulted in a reversal of left-right polarity (situs inversus) in 100 percent of the homozygous transgenic mice tested. Sequences that flanked the transgenic integration site were cloned and mapped to mouse chromosome 4, between the Tsha and Hxb loci. During early embryonic development, the direction of postimplantation turning, one of the earliest manifestations of left-right asymmetry, was reversed in homozygous transgenic embryos. This insertional mutation identifies a gene that controls embryonic turning and visceral left-right polarity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yokoyama, T -- Copeland, N G -- Jenkins, N A -- Montgomery, C A -- Elder, F F -- Overbeek, P A -- HD25340/HD/NICHD NIH HHS/ -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1993 Apr 30;260(5108):679-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8480178" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Chromosome Mapping ; Cloning, Molecular ; Embryonic and Fetal Development/*genetics ; Female ; *Genes, Recessive ; Homozygote ; Male ; Mice ; Mice, Transgenic ; Mutagenesis, Insertional ; Situs Inversus/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1993-04-02
    Description: Point mutations that activate the Ki-ras proto-oncogene are presented in about 50 percent of human colorectal tumors. To study the functional significance of these mutations, the activated Ki-ras genes in two human colon carcinoma cell lines, DLD-1 and HCT 116, were disrupted by homologous recombination. Compared with parental cells, cells disrupted at the activated Ki-ras gene were morphologically altered, lost the capacity for anchorage-independent growth, grew more slowly both in vitro and in nude mice, and showed reduced expression of c-myc. Thus, the activated Ki-ras gene plays a key role in colorectal tumorigenesis through altered cell differentiation and cell growth.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shirasawa, S -- Furuse, M -- Yokoyama, N -- Sasazuki, T -- New York, N.Y. -- Science. 1993 Apr 2;260(5104):85-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Kyushu University, Fukuoka, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8465203" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Cell Differentiation ; Cell Division ; Codon ; Colonic Neoplasms/*genetics/pathology ; Gene Expression Regulation, Neoplastic ; Genes, myc/genetics ; Genes, ras/*genetics ; Humans ; Infant ; Mice ; Mice, Nude ; Molecular Sequence Data ; Mutagenesis, Insertional ; Nucleic Acid Hybridization ; Plasmids ; *Point Mutation ; Polymerase Chain Reaction ; Restriction Mapping ; Transfection ; Tumor Cells, Cultured
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...