ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Ocean Drilling Program; ODP  (7)
  • PANGAEA  (7)
  • American Meteorological Society
  • American Meteorological Society (AMS)
  • Cambridge University Press
  • 2005-2009  (3)
  • 1990-1994  (4)
  • 1935-1939
Sammlung
Schlagwörter
Verlag/Herausgeber
  • PANGAEA  (7)
  • American Meteorological Society
  • American Meteorological Society (AMS)
  • Cambridge University Press
Erscheinungszeitraum
Jahr
  • 1
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: King, Alan J; Waggoner, D Guy; Garcia, Michael O (1993): Geochemistry and petrology of basalts from Leg 136, central Pacific Ocean. In: Wilkens, RH; Firth, J; Bender, J; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 136, 107-118, https://doi.org/10.2973/odp.proc.sr.136.211.1993
    Publikationsdatum: 2024-01-09
    Beschreibung: About 13 m of Cretaceous, tholeiitic basalt, ranging from normal (N-MORB) to transitional (T-MORB) mid-ocean-ridge basalts, was recovered at Ocean Drilling Program Site 843 west of the island of Hawaii. These moderately fractionated, aphyric lavas are probably representative of the oceanic basement on which the Hawaiian Islands were built. Whole-rock samples from parts of the cores exhibiting only slight, low-temperature, seawater alteration were analyzed for major element, trace element, and isotopic composition. The basalts are characterized by enrichment in the high field strength elements relative to N-MORB, by a distinct positive Eu anomaly, and by Ba/Nb and La/Nb ratios that are much lower than those of other crustal or mantle-derived rocks, but their isotope ratios are similar to those of present-day N-MORB from the East Pacific Rise. Hole 843A lavas are isotopically indistinguishable from Hole 843B lavas and are probably derived from the same source at a lower degree of partial melting, as indicated by lower Y/Nb and Zr/Nb ratios and by higher concentrations of light and middle rare earth elements and other incompatible elements relative to Hole 843B lavas. Petrographic and trace-element evidence indicates that the Eu anomaly was the result of neither plagioclase assimilation nor seawater alteration. The Eu anomaly and the enrichments in Ta, Nb, and possibly U and K relative to N-MORB apparently are characteristic of the mantle source. Age-corrected Nd and Sr isotopic ratios indicate that the source for the lavas recovered at ODP Site 843 was similar to the source for Southeast Pacific MORB. An enriched component within the Cretaceous mantle source of these basalts is suggested by their initial 208Pb/204Pb-206Pb/204Pb and epsilon-Nd-206Pb/204Pb ratios. The Sr-Pb isotopic trend of Hawaiian post-shield and post-erosional lavas cannot be explained by assimilation of oceanic crust with the isotopic composition of the Site 843 basalts.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 5 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Hodell, David A; Kamenov, George D; Hathorne, Ed C; Zachos, James C; Röhl, Ursula; Westerhold, Thomas (2007): Variations in the Strontium Isotope Composition of Seawater during the Paleocene and Early Eocene from ODP Leg 208 (Walvis Ridge). Geochemistry, Geophysics, Geosystems, 8, Q09001, https://doi.org/10.1029/2007GC001607
    Publikationsdatum: 2024-01-09
    Beschreibung: We refined the strontium isotope seawater curve for the Paleocene and early Eocene by analysis of samples recovered from the Walvis Ridge during Ocean Drilling Project (ODP) Leg 208. The highest 87Sr/86Sr values occurred in the earliest Paleocene at 65 Ma and generally decreased throughout the Paleocene, reaching minimum values between 53 and 51 Ma in the early Eocene before beginning to increase again at 50 Ma. A plausible explanation for the 87Sr/86Sr decrease between 65 and 51 Ma is increased rates of hydrothermal activity and/or the eruption and weathering of large igneous provinces (e.g., Deccan Traps and North Atlantic). Strontium isotope variations closely parallel sea level and benthic d18O changes during the late Paleocene and early Eocene, supporting previous studies linking tectonic reorganization and increased volcanism to high sea level, high CO2, and warm global temperatures.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Clift, Peter D (1994): Controls on the sedimentary and subsidence history of an active plate margin: an example from the Tonga arc (Southwest Pacific). In: Hawkins, J; Parson, L; Allan, J; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 135, 173-188, https://doi.org/10.2973/odp.proc.sr.135.103.1994
    Publikationsdatum: 2024-01-09
    Beschreibung: Sedimentary sections recovered from the Tonga platform and forearc during Ocean Drilling Program Leg 135 provide a record of the sedimentary evolution of the active margin of the Indo-Australian Plate from late Eocene time to the Present. Facies analyses of the sediments, coupled with interpretations of downhole Formation MicroScanner logs, allow the complete sedimentary and subsidence history of each site to be reconstructed. After taking into account the water depths in which the sediments were deposited and their subsequent compaction, the forearc region of the Tofua Arc (Site 841) can be seen to have experienced an initial period of tectonic subsidence dating from 35.5 Ma. Subsidence has probably been gradual since that time, with possible phases of accelerated subsidence, starting at 16.2 and 10.0 Ma. The Tonga Platform (Site 840) records only the last 7.0 Ma of arc evolution. However, the increased accuracy of paleowater depth determinations possible with shallow-water platform sediments allows the resolution of a distinct increase in subsidence rates at 5.30 Ma. Thus, sedimentology and subsidence analyses show the existence of at least two, and possibly four, separate subsidence events in the forearc region. Subsidence dating from 35.5 Ma is linked to rifting of the South Fiji Basin. Any subsidence dating from 16.2 Ma at Site 841 does not correlate with another known tectonic event and is perhaps linked to localized extensional faulting related to slab roll back during steady-state subduction. Subsidence from 10.0 Ma coincides with the breakup of the early Tertiary Vitiaz Arc because of the subduction polarity reversal in the New Hebrides and the subsequent readjustment of the plate boundary geometry. More recently, rapid subsidence and deposition of a upward-fining cycle from 5.30 Ma to the Present at Site 840 is thought to relate to rifting of the Lau Basin. Sedimentation is principally controlled by tectonic activity, with variations in eustatic sea level playing a significant, but subordinate role. Subduction of the Louisville Seamount Chain seems to have disrupted the forearc region locally, although it had only a modest effect on the subsidence history and sedimentation of the Tonga Platform as a whole.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 3 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Weirauch, D; Billups, Katharina; Martin, Pamela (2008): Evolution of millennial-scale climate variability during the mid-Pleistocene. Paleoceanography, 23(3), PA3216, https://doi.org/10.1029/2007PA001584
    Publikationsdatum: 2024-01-09
    Beschreibung: We use the oxygen isotopic composition of planktonic foraminifera Globigerinoides ruber (white) from Ocean Drilling Program Site 1058 in the subtropical northwestern Atlantic to construct a high-resolution (~800 year) climate record spanning the mid-Pleistocene climate transition (~410 ka to 1350 ka). We investigate whether or not millennial-scale instabilities in the proxy record are associated with the extent of continental glaciation. G. ruber d18O values display high-frequency fluctuations throughout the record, but the amplitude about mean glacial and interglacial d18O values increases at marine isotope stage (MIS) 22 (880 ka) and is highest during MIS 12. These observations support that millennial-scale climate instabilities are associated with ice sheet size. Time series analysis illustrates that these variations have significant concentration of spectral power centered on periods of ~10-12 ka and ~5 ka. The timing of these fluctuations agrees well, or coincides with, the periodicities of the second and fourth harmonics, respectively, of precessional forcing at the equator. An insolation-based origin of the millennial-scale instabilities would be independent of ice volume and explains the presence of these fluctuations before the mid-Pleistocene climate transition as well as during interglacial intervals (e.g., MIS 37 and 17). Because the amplitude of the millennial-scale variations increases during the mid-Pleistocene transition, feedback mechanisms associated with the growth of large, 100-ka-paced, polar ice sheets may be important amplifiers of regional surface water hydrographic changes.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Lisiecki, Lorraine E; Herbert, Timothy D (2007): Automated composite depth scale construction and estimates of sediment core extension. Paleoceanography, 22(4), PA4213, https://doi.org/10.1029/2006PA001401
    Publikationsdatum: 2024-01-09
    Beschreibung: A composite section, which reconstructs a continuous stratigraphic record from cores of multiple nearby holes, and its associated composite depth scale are important tools for analyzing sediment recovered from a drilling site. However, the standard technique for creating composite depth scales on drilling cruises does not correct for depth distortion within each core. Additionally, the splicing technique used to create composite sections often results in a 10–15% offset between composite depths and measured drill depths. We present a new automated compositing technique that better aligns stratigraphy across holes, corrects depth offsets, and could be performed aboard ship. By analyzing 618 cores from seven Ocean Drilling Program (ODP) sites, we estimate that ∼80% of the depth offset in traditional composite depth scales results from core extension during drilling and extraction. Average rates of extension are 12.4 ± 1.5% for calcareous and siliceous cores from ODP Leg 138 and 8.1 ± 1.1% for calcareous and clay-rich cores from ODP Leg 154. Also, average extension decreases as a function of depth in the sediment column, suggesting that elastic rebound is not the dominant extension mechanism.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 14 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Waggoner, D Guy (1993): The age and alteration of central Pacific Oceanic crust near Hawaii, Site 843. In: Wilkens, RH; Firth, J; Bender, J; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 136, 119-132, https://doi.org/10.2973/odp.proc.sr.136.212.1993
    Publikationsdatum: 2024-01-09
    Beschreibung: 40Ar-39Ar incremental heating experiments on a relatively unaltered basalt from Site 843 yield a crystallization age of 110 ± 2 Ma for the central Pacific Ocean igneous basement near Hawaii. Previous estimates of the age of the basement inferred by indirect methods and from radiometric dates of the South Hawaiian Seamounts are too young by 20-30 m.y. Phyllosilicate alteration minerals from veins in the Site 843 basalts define a Rb/Sr isochron with an age of 94.5 ± 0.5 Ma. The isochron records the last equilibration of the phyllosilicate minerals with a hydrothermal fluid at about 16 m.y. after the formation of the igneous basement. The last event recorded by calcite veins is the sealing of the crust by a sufficient thickness of sediment to impede the free circulation of seawater into the crust. The chemistry of the alteration minerals indicates the rare earth elements in the hydrothermal solutions were derived from alteration of the basalts and, furthermore, were transported in solution as metal species and carbonate complexes. Calcite with approximately seawater 87Sr/86Sr, but Sr contents too low to precipitate directly from seawater, is suggested to have formed at a late stage in the alteration history of the crust by the reaction of seawater with calcite precipitated earlier from basalt-dominated hydrothermal fluids.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 2 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    facet.materialart.
    Unbekannt
    PANGAEA
    In:  Supplement to: Clift, Peter D; Dixon, John E (1994): Variations in arc volcanism and sedimentation related to rifting of the Lau Basin (Southwest Pacific). In: Hawkins, J; Parson, L; Allan, J; et al. (eds.), Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 135, 23-49, https://doi.org/10.2973/odp.proc.sr.135.102.1994
    Publikationsdatum: 2024-01-09
    Beschreibung: A series of six holes in the Lau Basin and two in the Tonga Platform were drilled during Leg 135 of the Ocean Drilling Program. The volcaniclastic sands found within the sedimentary cover are typically dominated by fragments of dacite glass, although basaltic andesite glass, calcic plagioclase, and ortho- and clinopyroxene grains are also identified. Total silica contents of individual glass grains indicate a bimodal spread of values at sites close to the Eastern Lau Spreading Center (ELSC), whereas those adjacent to the remnant arc (Lau Ridge) showed a complete spread of compositions. Analyses from the Tonga Platform (Site 840) indicate a prerift phase of arc volcanism (7.0-5.0 Ma) when a complete spectrum of silica values was erupted before backarc basin rifting occurred and the locus of volcanism switched to intrabasinal seamounts producing very similar island-arc tholeiites and their differentiates. The principal mode of deposition of volcanic sediment in the Lau Basin is thought to be by proximal mass-flows and turbidity currents from submarine, intrabasinal seamounts. Continuous volcaniclastic sedimentation throughout the opening of the basin indicates that volcanism during the initial stages of basin rifting occurred in the form of intrabasinal submarine edifices, before the reestablishment of a fixed chain of arc volcanoes, adjacent to the Tonga Platform at approximately 3.0 Ma in the southern Lau Basin. Renewal of arc volcanism approximately coincided with the propagation of backarc spreading centers into that area. Trace and rare earth element analyses of basaltic grains (SiO2 = 45%-55%) from the Tonga Platform (Site 840) before and after rifting show systematic trends in the abundances of incompatible elements and in incompatible element ratios that are consistent with either progressive depletion and then reenrichment of a mantle source, or an equivalent progressive increase and then decrease in the degree of melting. On top of this, there is some indication of a systematic shift in the character of enrichment towards a greater abundance of mobile incompatibles associated with the flux from the slab. The culmination of this cycle can be considered to be the modern Tofua Arc. These trends are most reasonably attributed to a thinning of the arc lithosphere before rifting and the associated increase in the height of the melting column within the subarc asthenosphere. Subsequent magmatic underplating after rifting causes a thickening of the arc lithosphere and a fall in the degree of partial melting, with a progressive slab-flux component being added to the source. The incompatible element ratio trends are correlated whether they are high-field-strength elements, rare-earth elements, or mobile large-ion-lithophile elements, implying that they relate to incompatibilities between source and melt, even though the absolute values in the basic rocks are typically arc-like rather than MORB-like, particularly in their enrichment in Ba and depletion in Nb. The behavior of Nb in particular appears to have important implications for the process by which arc-tholeiites acquire their distinctive trace-element characteristics.
    Schlagwort(e): Ocean Drilling Program; ODP
    Materialart: Dataset
    Format: application/zip, 5 datasets
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...