ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-02-03
    Description: Several Electrical Resistivity Tomography (ERT) surveys have been carried out to study the subsurface structural and sedimentary settings of the upper Ufita River valley, and to evaluate their efficiency to distinguish the geological boundary between shallow Quaternary sedimentary deposits and clayey bedrock characterized by moderate resistivity contrast. Five shallow ERTs were carried out across a morphological scarp running at the foot of the northeastern slope of the valley. This valley shoulder is characterized by a set of triangular facets, that some authors associated to the presence of a SW-dipping normal fault. The geological studies allow us to interpret the shallow ERTs results obtaining a resistivity range for each Quaternary sedimentary deposit. The tomographies showed the geometrical relationships of alluvial and slope deposits, having a maximum thickness of 30-40 m, and the morphology of the bedrock. The resistivity range obtained for each sedimentary body has been used for calibrating the tomographic results of one 3560m-long deep ERT carried out across the deeper part of the intramountain depression with an investigation depth of about 170 m. The deep resistivity result highlighted the complex alluvial setting, characterized by alternating fine grained lacustrine deposits and coarser gravelly fluvial sediments.
    Description: In press
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: JCR Journal
    Description: open
    Keywords: Shallow ERT ; Deep ERT ; Ufita River Valley ; 04. Solid Earth::04.02. Exploration geophysics::04.02.04. Magnetic and electrical methods
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-26
    Description: Regulatory T cells (T(reg)) expressing the transcription factor Foxp3 control the autoreactive components of the immune system. The development of T(reg) cells is reciprocally related to that of pro-inflammatory T cells producing interleukin-17 (T(H)17). Although T(reg) cell dysfunction and/or T(H)17 cell dysregulation are thought to contribute to the development of autoimmune disorders, little is known about the physiological pathways that control the generation of these cell lineages. Here we report the identification of the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) as a regulator of T(reg) and T(H)17 cell differentiation in mice. AHR activation by its ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin induced functional T(reg) cells that suppressed experimental autoimmune encephalomyelitis. On the other hand, AHR activation by 6-formylindolo[3,2-b]carbazole interfered with T(reg) cell development, boosted T(H)17 cell differentiation and increased the severity of experimental autoimmune encephalomyelitis in mice. Thus, AHR regulates both T(reg) and T(H)17 cell differentiation in a ligand-specific fashion, constituting a unique target for therapeutic immunomodulation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Quintana, Francisco J -- Basso, Alexandre S -- Iglesias, Antonio H -- Korn, Thomas -- Farez, Mauricio F -- Bettelli, Estelle -- Caccamo, Mario -- Oukka, Mohamed -- Weiner, Howard L -- AI435801/AI/NIAID NIH HHS/ -- NS38037/NS/NINDS NIH HHS/ -- P01 NS038037/NS/NINDS NIH HHS/ -- R01 AI073542/AI/NIAID NIH HHS/ -- R01 AI073542-01/AI/NIAID NIH HHS/ -- R01 AI073542-02/AI/NIAID NIH HHS/ -- R01 NS059996/NS/NINDS NIH HHS/ -- R01AI073542-01/AI/NIAID NIH HHS/ -- England -- Nature. 2008 May 1;453(7191):65-71. doi: 10.1038/nature06880. Epub 2008 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18362915" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carbazoles/metabolism/pharmacology ; *Cell Differentiation ; Encephalomyelitis, Autoimmune, Experimental/chemically induced/immunology ; Forkhead Transcription Factors/genetics/metabolism ; Humans ; Indoles/metabolism/pharmacology ; Interleukin-17/*metabolism ; Ligands ; Mice ; Mice, Inbred C57BL ; Receptors, Aryl Hydrocarbon/genetics/*metabolism ; T-Lymphocytes, Helper-Inducer/*cytology/drug effects/*metabolism ; T-Lymphocytes, Regulatory/*cytology/drug effects/*metabolism ; Tetrachlorodibenzodioxin/metabolism/pharmacology ; Transforming Growth Factor beta1/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-09-13
    Description: The neuropeptide corticotropin-releasing factor (CRF) is well known to act on the central nervous system in ways that mimic stress and result in decreases in exploration, increases in sympathetic activity, decreases in parasympathetic outflow, and decreases in appetitive behavior. Urocortin, a neuropeptide related to CRF, binds with high affinity to the CRF2 receptor, is more potent than CRF in suppressing appetite, but is less potent than CRF in producing anxiety-like effects and activation. Doses as low as 10 nanograms injected intracerebroventricularly were effective in decreasing food intake in food-deprived and free-feeding rats. These results suggest that urocortin may be an endogenous CRF-like factor in the brain responsible for the effects of stress on appetite.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Spina, M -- Merlo-Pich, E -- Chan, R K -- Basso, A M -- Rivier, J -- Vale, W -- Koob, G F -- 1 F05 TW05262/TW/FIC NIH HHS/ -- DK 26741/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1996 Sep 13;273(5281):1561-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuropharmacology, Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8703220" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Appetite/*drug effects ; Appetite Depressants/administration & dosage/metabolism/*pharmacology ; Behavior, Animal/drug effects ; Blood Pressure/drug effects ; Carrier Proteins/metabolism ; Corticotropin-Releasing Hormone/administration & dosage/metabolism/*pharmacology ; Dose-Response Relationship, Drug ; Eating/drug effects ; Fasting ; Injections, Intraventricular ; Motor Activity/drug effects ; Rats ; Rats, Wistar ; Receptors, Corticotropin-Releasing Hormone/metabolism ; Urocortins ; Urotensins/pharmacology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...