ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 18 (1999), S. 127-136 
    ISSN: 1573-4943
    Keywords: Aspartic proteinases ; protein folding ; protein fusions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The mammalian aspartic proteinases procathepsin D and pepsinogen form insoluble inclusion bodies when expressed in bacteria. They become soluble but nonnative when synthesized as fusions to the carboxy terminus of E. coli maltose-binding protein (MBP). Since these nonnative states of the two aspartic proteinases showed no tendency to form insoluble aggregates, their biophysical properties were analyzed. The MBP portions were properly folded as shown by binding to amylose, but the aspartic proteinase moieties failed to bind pepstatin and lacked enzymatic activity, indicating that they were not correctly folded. When treated with proteinase K, only the MBP portion of the fusions was resistant to proteolysis. The fusion between MBP and cathepsin D had increased hydrophobic surface exposure compared to the two unfused partners, as determined by bis-ANS binding. Ultracentrifugal sedimentation analysis of MBP–procathepsin D and MBP–pepsinogen revealed species with very large and heterogeneous sedimentation values. Refolding of the fusions from 8 M urea generated proteins no larger than dimers. Refolded MBP–pepsinogen was proteolytically active, while only a few percent of renatured MBP–procathepsin D was obtained. The results suggest that MBP–aspartic proteinase fusions can provide a source of soluble but nonnative folding states of the mammalian polypeptides in the absence of aggregation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...