ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Artificial lung  (1)
  • 2005-2009
  • 1995-1999  (1)
  • 1985-1989
  • 1910-1914
Collection
Publisher
Years
  • 2005-2009
  • 1995-1999  (1)
  • 1985-1989
  • 1910-1914
  • 2000-2004  (1)
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annals of biomedical engineering 26 (1998), S. 166-178 
    ISSN: 1573-9686
    Keywords: ARDS ; Intravenous oxygenation ; Artificial lung ; Mathematical model ; Model ; Gas exchange ; Oxygenator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Acute respiratory distress syndrome (ARDS) is a pulmonary edemic condition which reduces respiratory exchange in 150,000 people per year in the United States. The currently available therapies of mechanical ventilation and extracorporeal membrane oxygenation are associated with high mortality rates, so intravenous oxygenation represents an attractive, alternative support modality. We are developing an intravenous membrane oxygenator (IMO) device intended to provide 50% of basal oxygen and carbon dioxide exchange requirements for ARDS patients. A unique aspect of the IMO is its use of an integral balloon to provide active mixing. This paper describes a mathematical model which was developed to quantify and optimize the gas exchange performance of the IMO. The model focuses on balloon activated mixing, uses a lumped compartment approach, and approximates the blood-side mass transfer coefficients with cross-flow correlations. IMO gas exchange was simulated in water and blood, for a variety of device geometries and balloon pulsation rates. The modeling predicts the following: (1) gas exchange efficiency is reduced by a buildup of oxygen in the fluid near the fibers; (2) the IMO gas exchange rate in blood is normally about twice that in water under comparable conditions; (3) a balloon diameter of about 1.5 cm leads to optimal gas exchange performance; and (4) in vivo positioning can affect gas exchange rates. The numerically predicted gas transfer rates correlate closely with those experimentally measured in vitro for current IMO prototypes. © 1998 Biomedical Engineering Society. PAC98: 8710+e, 8790+y, 8265Fr
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...