ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (9)
  • 2005-2009  (2)
  • 1995-1999  (6)
  • 1990-1994  (1)
  • 1970-1974
Collection
Years
Year
  • 1
    Publication Date: 2011-08-24
    Description: Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 383; 6599; 418-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Deuterated water (HDO) was detected in comet C/1995 O1 (Hale-Bopp) with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred D/H ratio in Hale-Bopp's water is (3.3 +/- 0.8) x 10(-4). This result is consistent with in situ measurements of comet P/Halley and the value found in C/1996 B2 (Hyakutake). This D/H ratio, higher than that in terrestrial water and more than 10 times the value for protosolar H2, implies that comets cannot be the only source for the oceans on Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5352; 842-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed values of D/H in water and HCN imply a kinetic temperature 〉/=30 +/- 10 K in the fragment of interstellar cloud that formed the solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5357; 1707-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: Stratospheric temperatures on Saturn imply a strong decay of the equatorial winds with altitude. If the decrease in winds reported from recent Hubble Space Telescope images is not a temporal change, then the features tracked must have been at least 130 kilometers higher than in earlier studies. Saturn's south polar stratosphere is warmer than predicted from simple radiative models. The C/H ratio on Saturn is seven times solar, twice Jupiter's. Saturn's ring temperatures have radial variations down to the smallest scale resolved (100 kilometers). Diurnal surface temperature variations on Phoebe suggest a more porous regolith than on the jovian satellites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 307; 5713; 1247-51
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-18
    Description: Here we report the combination of new near-ir spectra (1.45-2.48 micrometers), of Titania and Oberon obtained in September 1995 at a resolving power of approx. 800, with older near-ir observations (0.5- 1.44 micrometers), and recent UV (0.22-0.48 micrometers) observations obtained with HST. Previous interpretations suggest these surfaces are chiefly composed of water ice and varying amounts of spectrally neutral material. The new near-ir data provide the opportunity to search for absorption bands that could be attributable to surface materials other than water ice and because the combined spectra include such a broad wavelength region, to undertake improved models of water and neutral components on the surface. The calculated near-ir geometric albedos clearly exhibit three broad spectral features. Two (1.52- & 2.05 micrometer) have previously been used to demonstrate the presence of water ice on these satellites. The third (approx. 1.65 micrometer), suggests the presence of hexagonal water ice at low temperatures, and may provide a mechanism of estimating the surface temperature. There is no spectral evidence for ices of CO2, CO, NH3 or CH4. At UV wavelengths there is a broad absorption near 0.27-0.28 micrometer previously attributed to OH formed by magnetospheric-surface interactions and retained at the low surface temperatures of these satellites. Surface components used in a Hapke scattering models include values for a combination of irradiated water ice in the UV and hexagonal water ice at 100k in the near-ir (IR), amorphous carbon (AC), and tholins (T) (produced from gas and solid). Results of these models suggest the surfaces of Titania/Oberon are composed of IW (-77/52%) with AC the next most abundant component (approx. 19/52%) and finally T (approx. 4/7%).
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Astronomical Society, Division of Planetary Sciences Annual Meeting; Oct 11, 1998 - Oct 16, 1998; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: On 15 August 1994 we launched the EUVS sounding rocket payload to observe the 825-1110 angstrom region of Venus's far ultraviolet airglow spectrum. The EUVS telescope/spectrograph obtained good data at five times higher spectral resolution than was previously available in the far ultraviolet. We present these data and compare our results to those obtained by the Galileo UVS and Venera 11/12 UV spectrophotometers. We identify several new spectral emission features, including both singly ionized nitrogen and molecular nitrogen in Venus's spectrum. We also see evidence for electron-impact-induced emission from CO. Finally, the EUVS data indicate that the "Ar" emissions detected in Venus's far ultraviolet spectrum by Venera 11/12 spectrophotometers are in fact not due to argon, thus eliminating the discrepancy between in situ and remote sensing measurements.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus (ISSN 0019-1035); 122; 1; 200-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Nitrogen, together with carbon, hydrogen, oxygen, phosphorus and sulfur (CHNOPS), plays a central role in life as we know it. Indeed, molecular nitrogen is the most abundant component of the terrestrial atmosphere, and second only to carbon dioxide on Mars and Venus. The Voyager and Cassini-Huygens observations show that copious nitrogen is present on Titan also, comprising some 95% by volume of this moon's 1500 millibar atmosphere. After water vapor, it may be the most abundant (4%) of the gases around tiny Enceladus, as revealed by the recent Cassini observations. A thin nitrogen atmosphere is found even on the coldest of the solar system bodies, Triton and Pluto. The available evidence on nitrogen isotopes and the heavy noble gases suggests that Titan acquired its nitrogen largely in the form of ammonia. Subsequent chemical evolution, beginning with the photolysis of NH3 on primordial Titan, led to the nitrogen atmosphere we see on Titan today. This is also the scenario for the origin of nitrogen on the terrestrial planets. Contrary to Titan, the colder outer solar system objects, Triton and Pluto, neither had the luxury of receiving much arnmonia in the first place, nor of photolyzing whatever little ammonia they did receive in the planetesimals that formed them. On the other hand, it is plausible the planetesimals were capable of trapping and delivering molecular nitrogen directly to Triton and Pluto, unlike Titan. The origin of nitrogen on Enceladus is somewhat enigmatic. A scenario similar to Titan's, but with a role for the interior processes, may be at work. In this paper, we will discuss the source and loss of nitrogen for the above objects, and why Ganymede, the largest moon in the solar system, is nitrogen starved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Planetary Science Congress 2006; 16-23 Sept. 2006; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-10
    Description: In May 1995, a set of spectrophotometric curves of the system Pluto-Charon was recorded with the UKIRT telescope equipped with the spectrometer CGS4. As for the previous observations, the spectra cover a part of the near infrared range, between 1.4 and 2.55 micrometers, but with a higher resolution of approximately 700. In both the 1992 and 1995 data, the existence of solid methane is confirmed by numerous absorption bands, and the carbon monoxide and the nitrogen ices are identified by their respective signatures at 2.35 and 2.15 um. The solid nitrogen seems to be the principal icy component and forms a matrix in which the CH4 and CO molecules are diluted. However a spectroscopic analysis of the 1995 observations indicates that pure methane may coexist with its diluted phase in N2. In order to derive the horizontal and vertical distribution of these different species and to obtain some quantitative information about their characteristics, we have modeled the spectrum of May 15 that corresponds to the maximum of Pluto's visible light curve. This was achieved by means of a radiative transfer algorithm dealing with compact and stratified media. Among the various representations we have tested to describe the surface of Pluto, only a geographical mixture of three distinct units explains all the significant structures of the analyzed spectrum. The first unit is a thin granular layer of pure CH4 covering a compact polycrystalline substratum of N2-CH4-CO, which are in a molecular mixture (concentrations of and CO of the order of 0.45%, 0.1-0.2% respectively). It covers about 70% of the observed area and corresponds to volatile deposits that are sublimating under solar illumination. The second unit is either (a) a single thick layer of pure granular methane or (b) a unit similar to the first unit but with the two components inverted (i.e. with CH4 forming a substratum and the N2-CH4-CO mixture a superficial layer of fine grains). Covering 20% of the surface, it represents some old surfaces that have been sublimated for a long time, and eventually recovered later by very small amounts of fresh deposits of the molecular mixture N2-CH4-CO. Finally, the third unit may result from the condensation of very fine grains of nearly pure N2. It covers the remainder of the surface (about 10%). All these results allow a better understanding of the processes of deposition, metamorphism, sublimation and transport affecting the different ices detected on Pluto during its climatic cycles.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...