ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-17
    Description: This paper will describe the scientific objectives of the MSFC SUMI project and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed, This paper will describe the optical measurements that have been made on the SUMI telescope mirrors and polarization optics.
    Keywords: Instrumentation and Photography
    Type: UV/EUV and Visible Space Instrumentation for Astronomy and Solar Physics; Jul 29, 2001 - Aug 03, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: This paper will describe the polarizing optics that are being developed for an ultraviolet magnetograph (SUMI) which will be flown on a sounding rocket payload. With a limited observing program, the polarizing optics were optimized to make simultaneous observation at two magnetic lines CIV (155nm) and MgII (280). This paper will give a brief overview of the SUMI instrument, will describe the polarimeter that will be used in the sounding rocket program and will present some of the measurements that have been made on the (SUMI) polarization optics.
    Keywords: Instrumentation and Photography
    Type: Polarization Analysis and Measurement Analysis IV; Jul 29, 2001 - Aug 03, 2001; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: There are several microwave instruments in low Earth orbit (LEO) that are used for atmospheric temperature and humidity sounding in conjunction with companion IR sounders as well as by themselves. These instruments have achieved a certain degree of maturity and undergoing a redesign to minimize their size, mass, and power from the previous generation instruments. An example of these instruments is the AMSU-A series, now flying on POES and AQUA spacecraft with the IR sounders HIRS and AIRS. These older microwave instruments are going to be replaced by the ATMS instruments that will fly on NPP and NPOESS satellites with the CrIS sounder. A number of techniques learned from the ATMS project in instrument hardware design and data processing are directly applicable to a similar microwave sounder on a geosynchronous platform. These techniques can significantly simplify the design of a Geostationary orbit (GEO) microwave instrument, avoiding costly development and minimizing the risk of not being able to meet the scientific requirements. In fact, some of the 'enabling' technology, such as the use of MMIC microwave components (which is the basis for the ATMS' much reduced volume) can be directly applied to a GEO sounder. The benefits of microwave sounders are well known; for example, they penetrate non-precipitating cloud cover and allow for use of colocated IR observations in up to 80% cloud cover. The key advantages of a microwave instrument in GEO will be the ability to provide high temporal resolution as well as uniform spatial resolution and extend the utility of a colocated advanced IR sounder to cases in which partial cloud cover exists. A footprint of the order of 100 km by 100 km resolution with hemispherical coverage within one hour can be easily achieved for sounding channels in the 50 to 59 GHz range. A GEO microwave sounder will also allow mesoscale sampling of select regions.
    Keywords: Instrumentation and Photography
    Type: 11th SPIE International Symposium on Remote Sensing; Sep 13, 2004 - Sep 17, 2004; Maspalomas, Gran Canaria; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the W, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550 Angstroms) and MgII (2800 Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirrors and polarimeter.
    Keywords: Instrumentation and Photography
    Type: SPIE Astronomical Telescopes and Instrumentation 2004; Jun 21, 2004 - Jun 25, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: An optoelectronic system has been developed for measuring heights, above a floor, of designated points on a large object. In the original application for which the system was conceived, the large object is a space shuttle and the designated points are two front and two rear points for the attachment of jacks for positioning the shuttle at the height and horizontal pitch specified for maintenance operations. The front and rear jacking points are required to be raised to heights of 198 1/4 in. (502.9 0.6 cm) and 120.6 1/4 in. (306.4 0.6 cm), respectively.
    Keywords: Instrumentation and Photography
    Type: KSC-12098 , NASA Tech Briefs, March 2003; 13-14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: Two types of microwave radiometry--synthetic thinned array radiometry (STAR) and fully-polarimetric (FP) radiometry--have received increasing attention during the last several years. STAR radiometers offer a technological solution to achieving high spatial resolution imaging from orbit without requiring a filled aperture or a moving antenna, and FP radiometers measure extra polarization state information upon which entirely new or more robust geophysical retrieval algorithms can be based. Radiometer configurations used for both STAR and FP instruments share one fundamental feature that distinguishes them from more 'standard' radiometers, namely, they measure correlations between pairs of microwave signals. The calibration requirements for correlation radiometers are broader than those for standard radiometers. Quantities of interest include total powers, complex correlation coefficients, various offsets, and possible nonlinearities. A candidate for an ideal calibration source would be one that injects test signals with precisely controllable correlation coefficients and absolute powers simultaneously into a pair of receivers, permitting all of these calibration quantities to be measured. The complex nature of correlation radiometer calibration, coupled with certain inherent similarities between STAR and FP instruments, suggests significant leverage in addressing both problems together. Recognizing this, a project was recently begun at NASA Goddard Space Flight Center to develop a compact low-power subsystem for spaceflight STAR or FP receiver calibration. We present a common theoretical framework for the design of signals for a controlled correlation calibration source. A statistical model is described, along with temporal and spectral constraints on such signals. Finally, a method for realizing these signals is demonstrated using a Matlab-based implementation.
    Keywords: Instrumentation and Photography
    Type: Microwave Radiometer Calibration; Oct 30, 2000 - Oct 31, 2000; College Park, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: The Solar-B spacecraft was launched from the Uchinoura Space Center into a circular, sun-synchronous, polar orbit by the Japanese Aerospace Exploration Agency in late September 2006. The spacecraft carries thee scientific instruments designed to follow the flow of magnetic energy from the photosphere to the corona to improve our understanding of both steady state and transient energy release. This goal will be achieved through coordinated observations of three highly advanced solar telescopes developed cooperatively by teams from Japan, the United States and the United Kingdom. The three telescopes are a 0.5m aperture, diffraction limited, solar optical telescope (SOT), an X-ray telescope (XRT) designed for full sun imaging with 1.0 arcsec pixels and an EUV imaging spectrometer (EIS) with an order of magnitude improvement in sensitivity over past instruments. The SOT focal plane contains three instruments, a spectropolarimeter for measuring vector magnetic fields, a broadband filter imager for recording images of the photosphere and chromosphere at the highest resolution the telescope is capable of, and a narrow band filter imager that will record Doppler grams and vector magnetograms. The XRT has broad temperature coverage and a spatial a resolution three times as high as Yohkoh. EIS covers a broad range of transition region and coronal temperatures in two spectral bands. Both XRT and EIS have 2 arcsec spatial resolution (1 arcsec pixels). Instrument first light occurred after five weeks on orbit to allow for out gassing and the opening of the telescopes doors. The initial observation sequences are designed to test the functionality of the different operating modes and for calibration. After this commissioning phase is complete a series of observations are planned to demonstrate the ability of the instruments to meet NASA's mission minimum success criteria. Data is downloaded every orbit to the Norwegian high latitude ground station at Svalbard. The data are transmitted to ISAS where they are reformatted into FITS files and archived as Level 0 data on the ISAS DARTS system. Once the initial observation period is complete, approximately six months after launch, the mission data will be open and freely available to researchers shortly after receipt at the DARTS data archive hosted in Japan and at NASA s Solar Data Analysis Center at the Goddard Space Flight Center. Scientific operations will be conducted from the ISAS facility in Sagamihara, Japan and the observatory will become available for performing joint operations with both ground and space based instruments and for conducting observing programs proposed by non-team members. This process will be described together with a status report from the initial operation of the observatory, showing examples of the first observations.
    Keywords: Instrumentation and Photography
    Type: 2006 Fall American Geophysical Union Meeting; Dec 11, 2006 - Dec 15, 2006; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: This viewgraph presentation regards one element of a larger project on the integration of NASA science models and data into the Hazards U.S. Multi-Hazard (HAZUS-MH) Hurricane module for hurricane damage and loss risk assessment. HAZUS-MH is a decision support tool being developed by the National Institute of Building Sciences for the Federal Emergency Management Agency (FEMA). It includes the Hurricane Module, which employs surface roughness maps made from National Land Cover Data (NLCD) maps to estimate coastal hurricane wind damage and loss. NLCD maps are produced and distributed by the U.S. Geological Survey. This presentation discusses an effort to improve upon current HAZUS surface roughness maps by employing ASTER multispectral classifications with QuickBird "ground reference" imagery.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 2004 High Spatial Resolution Commercial Imagery Workshop; SSTI-2220-0039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This paper will describe the objectives of the Marshall Space Flight Center (MSFC) Solar Ultraviolet Magnetograph Investigation (SUMI) and the optical components that have been developed to meet those objectives. In order to test the scientific feasibility of measuring magnetic fields in the UV, a sounding rocket payload is being developed. This paper will discuss: (1) the scientific measurements that will be made by the SUMI sounding rocket program, (2) how the optics have been optimized for simultaneous measurements of two magnetic lines CIV (1550Angstroms) and MgII (2800Angstroms), and (3) the optical, reflectance, transmission and polarization measurements that have been made on the SUMI telescope mirrors and polarimeter.
    Keywords: Instrumentation and Photography
    Type: SPIE Paper 5488-132 , UV and Gamma-Ray Space Telescope Systems (ISSN 0277-786X); 5488; 801-812|UV and Gamma-Ray Space Telescope Systems; Jun 21, 2004 - Jun 24, 2004; Glasgow, Scotland; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...