ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10)
  • Lunar and Planetary Science and Exploration  (10)
  • Female
  • Humans
  • Life and Medical Sciences
  • 2005-2009  (1)
  • 2000-2004  (9)
  • 1
    Publication Date: 2004-12-03
    Description: Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current development and cutting edge research. The Thermal Evolved Gas Analyzer (TEGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil. Additional information is available in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Conference on Mars Polar Science and Exploration; 133-134; LPI-Contrib-1057
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Volatile-bearing minerals and phases (e.g., Fe-oxyhydroxides, phyllosilicates, carbonates, sulfates, palagonites, glasses) may be important components of the Martian regolith. However, essentially no information exists on the mineralogical composition of volatile-bearing phases in the regolith. The Thermal Evolved Gas Analyzer (TEGA), which was part of the Mars Polar Lander payload, was to determine the abundances of two of the most important volatile compounds (i.e., water and carbon dioxide) in the martian soil and to identify the minerals or phases that harbor these volatiles. The TEGA instrument was composed of a differential scanning calorimeter (DSC) interfaced with evolved gas analysis (EGA). The EGA consisted of a Herriott cell of a tunable-diode laser (TDL) spectrometer that determines CO2 and H2O abundances. The sample chamber was to operate at about 100 mbar (-76 torr) with a N2 carrier gas flow of 0.4 sccm. Specifications of TEGA are described in detail elsewhere in this volume.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Concepts and Approaches for Mars Exploration; Part 2; 225-226; LPI-Contrib-1062-Pt-2
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-10-02
    Description: We are conducting DSC/EGA experiments at Mars ambient temperature and pressure using the TEGA engineering model. These tests illustrate the outstanding capabilities of a TEGA-like instrument on the surface of Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-18
    Description: Iron and copper microparticles accelerated to 2-20 km/s in a 2 MV Van de Graaff accelerator were used to test a recently-developed cosmic dust mass spectrometer, known as the Dustbuster. Additional information is contained in the original extended abstract.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXIII; LPI-Contrib-1109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-10
    Description: The distinctive pattern of element concentrations in the upper mantle provides essential evidence in our attempts to understand the accretion and differentiation of the Earth (e.g., Drake and Righter, 2002; Jones and Drake, 1986; Righter et al., 1997; Wanke 1981). Core formation is best investigated through use of metal/silicate partition coefficients for siderophile elements. The variables influencing partition coefficients are temperature, pressure, the major element compositions of the silicate and metal phases, and oxygen fugacity. Examples of studies investigating the effects of these variables on partitioning behavior are: composition of the metal phase by Capobianco et al. (1999) and Righter et al. (1997); silicate melt composition by Watson (1976), Walter and Thibault (1995), Hillgren et al. (1996), Jana and Walker (1997), and Jaeger and Drake (2000); and oxygen fugacity by Capobianco et al. (1999), and Walter and Thibault (1995). Here we address the relative influences of silicate melt composition, pressure and temperature.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXV: Terrestrial Planets: Building Blocks and Differentiation; LPI-Contrib-1197
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-10
    Description: The importance of secondary phases in martian meteorites lies in their potential to provide clues about the martian environments responsible for their formation. During this study, we analyzed a number of carbonate-bearing fracture surfaces from the Nakhla meteorite. Here we describe the physical and chemical properties of several manganese-calcium-rich siderites. Additionally, we describe a potential model for the formation and alteration of these carbonates, and we suggest constraints on the conditions responsible for their precipitation. Nakhla is an olivine-bearing clinopyroxenite with minor amounts of feldspar, FeS, and Fe oxides. Secondary mineral assemblages include vein filling clay with embedded iron oxides, a calcium sulfate, amorphous silica, chlorapatite, halite and carbonates. Bridges and Grady suggested that the carbonates in Nakhla formed from brine evaporation. Isotope studies of the Mn rich siderite are also consistent with formation from hydrothermal fluids with an upper T constraint of ~170 C.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-7833 , Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-13
    Description: Differential Scanning Calorimetry (DSC) combined with evolved gas analysis (EGA) is a well developed technique for the analysis of a wide variety of sample types with broad application in material and soil sciences. However, the use of the technique for samples under conditions of pressure and temperature as found on other planets is one of current C development and cutting edge research. The Thermal Evolved Gas Analyzer (MGA), which was designed, built and tested at the University of Arizona's Lunar and Planetary Lab (LPL), utilizes DSC/EGA. TEGA, which was sent to Mars on the ill-fated Mars Polar Lander, was to be the first application of DSC/EGA on the surface of Mars as well as the first direct measurement of the volatile-bearing mineralogy in martian soil.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science; Mar 13, 2000 - Mar 17, 2000; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-11
    Description: Recently published results from Mars orbital data strongly support both the idea that large bodies of water were present at the surface in the past and the possibility that significant amounts of water ice are currently present in the regolith just below the planet's surface. These new findings increase the significance of the evidence in martian meteorites that some low-temperature aqueous alteration and secondary mineral deposition occurred on Mars.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Paper 12639 , JSC-CN-7745 , Living Links Through Time and Space: Meeting the Challenges of Interdisciplinary Science; 373-374
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A detailed Neptune aerocapture systems analysis and spacecraft design study was performed as part of NASA's In-Space Propulsion Program. The primary objectives were to assess the feasibility of a spacecraft point design for a Neptune/Triton science mission. That uses aerocapture as the Neptune orbit insertion mechanism. This paper provides an overview of the science, mission and spacecraft design resulting from that study.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 12, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In a very short period of time the MER project successfully developed and tested a system, TIRS/DIMES, to improve the probability of success in the presence of large Martian winds. The successful development of TIRS/DIMES played a big role in the landing site selection process by enabling the landing of Spirit on Gusev crater, a site of very high scientific interest but with known high wind conditions. The performance of TIRS by Spirit at Gusev Crater was excellent. The velocity prediction error was small and Big TIRS was fired reducing the impact horizontal velocity from approximately 23 meters per second to approximately 11 meters per second, well within the airbag capabilities. The performance of TIRS by Opportunity at Meridiani was good. The velocity prediction error was rather large (approximately 6 meters per second, a less than 2 sigma value, but TIRS did not fire which was the correct action.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Guidance and Control Conference; Feb 10, 2005; Breckenridge, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...