ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (20)
  • Meteorology and Climatology  (20)
  • Chemistry
  • 2005-2009  (8)
  • 2000-2004  (5)
  • 1995-1999  (7)
  • 1935-1939
  • 1
    Publication Date: 2004-12-03
    Description: Wind and water vapor are two major factors driving the Earth's atmospheric circulation, and direct measurement of these factors is needed for better understanding of basic atmospheric science, weather forecasting, and climate studies. Coherent lidar has proved to be a valuable tool for Doppler profiling of wind fields, and differential absorption lidar (DIAL) has shown its effectiveness in profiling water vapor. These two lidar techniques are generally considered distinctly different, but this paper explores an experimental combination of the Doppler and DIAL techniques for measuring both wind and water vapor with an eye-safe wavelength based on a solid-state laser material. Researchers have analyzed and demonstrated coherent DIAL water vapor measurements at 10 micrometers wavelength based on CO2 lasers. The hope of the research presented here is that the 2 gm wavelength in a holmium or thulium-based laser may offer smaller packaging and more rugged operation that the CO2-based approach. Researchers have extensively modeled 2 um coherent lasers for water vapor profiling, but no published demonstration is known. Studies have also been made, and results published on the Doppler portion, of a Nd:YAG-based coherent DIAL operating at 1.12 micrometers. Eye-safety of the 1.12 micrometer wavelength may be a concern, whereas the longer 2 micrometer and 10 micrometer systems allow a high level of eyesafety.
    Keywords: Meteorology and Climatology
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 68-71; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: We review the basic multiple scattering theory of off-beam lidar returns from optically thick clouds using the diffusion approximation. The shape of the temporal signal - the stretched pulse - depends primarily on the physical thickness of the cloud whereas its spatial counterpart - the diffuse spot - conveys specific information on the cloud's optical thickness, as do the absolute returns. This makes observation of the weak off-beam lidar returns an attractive prospect in remote sensing of cloud properties. By estimating the signal-to-noise ratio, we show that night-time measurements can be performed with existing technology. By the same criterion, day-time operation is a challenge that can only be met with a combination of cutting-edge techniques in filtering and in laser sources.
    Keywords: Meteorology and Climatology
    Type: Nineteenth International Laser Radar Conference; 91-94; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: We discuss the effect of horizontal fluxes on the accuracy of a conventional plane-parallel radiative transfer calculation for a single pixel, known as the Independent Pixel Approximation (IPA) at absorbing wavelengths. Vertically integrated horizontal fluxes can be represented as a sum of three components; each component is the IPA accuracy on a pixel-by-pixel basis for reflectance, transmittance and absorptance, respectively. We show that IPA accuracy for reflectance always improves with more absorption, while the IPA accuracy for transmittance is less sensitive to the changes in absorption: with respect to the non-absorbing case, it may first deteriorate for weak absorption and then improve again for strongly absorbing wavelengths. EPA accuracy for absorptance always deteriorates with more absorption. As a result, vertically integrated horizontal fluxes, as a sum of IPA accuracies for reflectance, transmittance and absorptance, increase with more absorption. Finally, the question of correlations between horizontal fluxes, IPA uncertainties and radiative smoothing is addressed using wavenumber spectra of radiation fields reflected from or transmitted through fractal clouds.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: A short course on off-beam cloud lidar is given. Specific topics addressed include: motivation and goal of off-beam cloud lidar; diffusion physics; numeric amalysis; and validity of the diffusion approximation. A demo of the process is included.
    Keywords: Meteorology and Climatology
    Type: Lidar for Meteorologists 101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: In this presentation we review the fractal nature of internal cloud structure from cm- to km-scales as captured by in-situ probes during long horizontal penetrations by aircraft. We uncover the non-Poissonian spatial distribution of cloud droplets at submeter scales and confirm scale-invariant behavior for large scales. Based on these structural characteristics, we generate simple fractal cloud models that reproduce statistical scaling properties of real clouds. These stochastic models represent a link between nonlinear science, in general, and cloud-radiation interaction, in particular. Next we run three-dimensional radiative transfer computations on these synthetic fractal clouds and compare the structure of the resulting radiation fields with the known structure of the cloud model and with satellite images of real clouds. The different behaviors observed for small and large-scale variabilities will be discussed in detail. We find that while the large-scale fluctuations of the resulting radiation fields resemble those in the original scale-invariant cloud structure, the radiation at small scales is much smoother than its cloud liquid water counterpart. This violates scale-invariance and produces a scale-break at 0.2-0.5 km that is clearly observed in high-resolution satellite data such as from Landsat. Finally, we show how radiative transfer Green function theory in the photon diffusion limit explains (and predicts) the above phenomena of "radiative smoothing."
    Keywords: Meteorology and Climatology
    Type: AGU Spring Meeting; May 29, 2001 - Jun 02, 2001; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: To meet its objective of reducing operations costs without incurring a corresponding increase in risk, NASA is seeking new methods to automate mission operations. This paper examines the state of the art in automating ground operations for space missions. A summary of available technologies and methods for automating mission operations is provided. Responses from interviews with several space mission FOTs (Flight Operations Teams) to assess the degree and success of those technologies and methods implemented are presented. Mission operators that were interviewed approached automation using different tools and methods resulting in varying degrees of success - from nearly completely automated to nearly completely manual. Two key criteria for successful automation are the active participation of the FOT in the planning, designing, testing, and implementation of the system and the relative degree of complexity of the mission.
    Keywords: Meteorology and Climatology
    Type: FLAIRS Conference; May 21, 2001 - May 23, 2001; Key West, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-17
    Description: Measurements of the distribution of reflected light from a laser beam incident on an aqueous suspension of particles or "cloud" with known thickness and particle size distribution are reported. The distribution is referred to as the "cloud radiative Green's function", G. In the diffusion domain, G is sensitive to cloud thickness, allowing that important quantity to be retrieved. The goal of the laboratory simulation is to provide preliminary estimates of sensitivity of G to cloud thickness,for use in the optimal design of an offbeam Lidar instrument for remote sensing of cloud thickness (THOR, Thickness from Offbeam Returns). These clouds of polystyrene microspheres suspended in water are analogous to real clouds of water droplets suspended in air. The microsphere size distribution is roughly lognormal, from 0.5 microns to 25 microns, similar to real clouds. Density of suspended spheres is adjusted so mean-free-path of visible photons is about 10 cm, approximately 1000 times smaller than in real clouds. The light source is a ND:YAG laser at 530 nm. Detectors are flux and photon-counting Photomultiplier Tube (PMTS), with a glass probe for precise positioning. A Labview 5 VI controls positioning, and data acquisition, via an NI Motion Control board connected to a stepper motor driving an Edmund linear slider, and a 16-channel 16-bit NI-DAQ board. The stepper motor is accurate to 10 microns, and step size is selectable from the VI software. Far from the incident beam, the rate of exponential increase as the direction of the incident beam is approached scales as expected from diffusion theory, linearly with the cloud thickness, and inversely as the square root of the reduced optical thickness, and is independent of particle size. Near the beam the signal begins to increase faster than exponential, due to single and low-order scattering near the backward direction, and here the distribution depends on particle size. Results are being used to verify 3D Monte Carlo radiative transfer simulations, used to estimate signal-to-noise ratios for remotely sensed off beam returns, for both homogeneous and inhomogeneous clouds. Signal-to-noise estimates show that unfiltered observations are straight forward at night, while narrow band pass filters are being studied for day.
    Keywords: Meteorology and Climatology
    Type: Remote Sensing of Clouds and the Atmosphere; Sep 20, 1999 - Sep 24, 1999; Florence; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: To accurately model radiative fluxes at the surface and within the atmosphere, we need to know both vertical and horizontal structures of cloudiness. While MODIS provides accurate information on cloud horizontal structure, it has limited ability to estimate cloud vertical structure. ICESat/GLAS on the other hand, provides the vertical distribution and internal structure of clouds as deep as the laser beam can penetrate and return a signal. Having different orbits, MODIS and GLAS provide few collocated measurements; hence a statistical approach is needed to learn about 3D cloud structures from the two instruments. In the presentation, we show the results of the statistical analysis of vertical and horizontal structure of cloudiness using GLAS and MODIS cloud top(s) data acquired in October-November 2003. We revisit the (H1, C1) plot, previously used for analyzing cloud liquid water data, and illustrate cloud structure for single and multiple-layer clouds.
    Keywords: Meteorology and Climatology
    Type: 2007 International Union of Geodesy and Geophysics; Jul 02, 2007 - Jul 13, 2007; Perugia; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-19
    Description: Lightning is responsible for an estimated 15 percent of total NO emissions, and is one of the most prominent sources in the upper troposphere. In this study, we present evidence of lightning-generated NO2 (LNO2) using data from the Ozone Monitoring Instrument (OMI), which has observed tropospheric NO2 since its launch in 2004. Although LNO2 has been also reported in previous satellite studies from the Global Ozone Monitoring Experiment (GOME) and SCIAMACHY, OMI is better suited for such measurements by virtue of its higher spatial resolution and daily global coverage. We will present data clearly showing the LNO2 signal in the OMI tropospheric NO2 product on two days over and downwind of specific convective systems in the US Midwest. Gridded monthly mean tropospheric NO 2 data are subtracted from the daily gridded data to obtain the presumed LNO2 signal. Observed cloud-to-ground (CG) lightning flashes from the National Lightning Detection Network (NLDN) were counted along middle and upper tropospheric back trajectories that were run from the regions containing the LNO2 signal. A vertically-weighted average number of upwind CG flashes was obtained using a profile of LNO(x) mass obtained from a series of midlatitude cloud-resolved storm chemistry simulations. The number of CG flashes was scaled up to total flashes (intracloud (IC) flashes plus CG) using a climatological IC/CG ratio. The number of moles of LNO(x) in the region considered was estimated by assuming that LNO2 is 30 percent of LNO(x). This value was divided by the number of upwind flashes to obtain an average estimate of the number of moles produced per flash. Results yield values in the range obtained through other estimation techniques (e.g., aircraft measurements, models). We will also present a similar analysis over northern Australia during the SCOUT-O3/ACTIVE field campaigns in November and December 2005, in which we will compare the OMI LNOx signals with aircraft observations from the storm anvils.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: In order to correctly interpret shortwave cloud radiation measured by satellites and ground-based radiometers, or by two aircraft flying above and below clouds, we need to better understand interactions between inhomogeneous clouds and solar radiation. The discrepancies between shortwave absorption inferred from measurements and predicted by models, between cloud optical depths estimated from satellites and ground measurements, between single scattering albedo retrieved from in situ radiation measurements and computed from measured droplet size distribution, among others, are strongly affected by cloud horizontal inhomogeneity. Net horizontal photon transport (i. e., horizontal fluxes) are a direct consequence of the inhomoqeneity in cloud structure. Horizontal fluxes and their effect on the accuracy of the pixel-by-pixel one-dimensional (1 D) radiative transfer calculations has recently undergone close scrutiny for conservative scattering. However, the properties and magnitude of horizontal fluxes in absorbing wavelengths are still poorly understood. As far as we are aware, only Ackerman and Cox and Titov discussed correlations between horizontal fluxes at absorbing wavelengths, though these were far from comprehensive. This paper partly fills this gap. We discuss here of whether the accuracy of the Independent Pixel Approximation (IPA), a 1 D radiative transfer approximation for each pixel, is a better model for multiple scattering at conservative or at absorbing wavelengths. Issues addressed here are: (1) dependence of net horizontal fluxes on single scattering albedo; (2) connection between pixel-by-pixel accuracy of the IPA and horizontal fluxes and (3) radiative smoothing and horizontal fluxes at absorbing wavelengths. In contrast to the traditional understanding of IPA, we study IPA accuracies not only for reflectance but also for transmittance and absorptance at both conservative and absorbing wavelengths. In spite of the apparent similarity between the three processes, dependence of IPA accuracies on single-scattering albedo is completely different. As a result, cloud optical properties retrieved from high resolution satellite images and ground-based measurements using IPA at absorbing channels will have different accuracies.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Radiation; Jun 28, 1999 - Jul 02, 1999; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...