ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (72)
  • 1
    Publication Date: 2014-12-12
    Description: Gamma-ray burst (GRB) 111215A was bright at X-ray and radio frequencies, but not detected in the optical or near-infrared (nIR) down to deep limits. We have observed the GRB afterglow with the Westerbork Synthesis Radio Telescope and Arcminute Microkelvin Imager at radio frequencies, with the William Herschel Telescope and Nordic Optical Telescope in the nIR/optical, and with the Chandra X-ray Observatory . We have combined our data with the Swift X-Ray Telescope monitoring, and radio and millimetre observations from the literature to perform broad-band modelling, and determined the macro- and microphysical parameters of the GRB blast wave. By combining the broad-band modelling results with our nIR upper limits we have put constraints on the extinction in the host galaxy. This is consistent with the optical extinction we have derived from the excess X-ray absorption, and higher than in other dark bursts for which similar modelling work has been performed. We also present deep imaging of the host galaxy with the Keck I telescope, Spitzer Space Telescope , and Hubble Space Telescope ( HST ), which resulted in a well-constrained photometric redshift, giving credence to the tentative spectroscopic redshift we obtained with the Keck II telescope, and estimates for the stellar mass and star formation rate of the host. Finally, our high-resolution HST images of the host galaxy show that the GRB afterglow position is offset from the brightest regions of the host galaxy, in contrast to studies of optically bright GRBs.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-12
    Description: We present an analysis of the photometry and spectroscopy of the host galaxy of Swift -detected GRB 080517. From our optical spectroscopy, we identify a redshift of z  = 0.089 ± 0.003, based on strong emission lines, making this a rare example of a very local, low-luminosity, long gamma-ray burst. The galaxy is detected in the radio with a flux density of S 4.5 GHz  = 0.22 ± 0.04 mJy – one of relatively few known gamma-ray bursts hosts with a securely measured radio flux. Both optical emission lines and a strong detection at 22 μm suggest that the host galaxy is forming stars rapidly, with an inferred star formation rate ~16 M  yr –1 and a high dust obscuration ( E ( B – V ) 〉 1, based on sightlines to the nebular emission regions). The presence of a companion galaxy within a projected distance of 25 kpc, and almost identical in redshift, suggests that star formation may have been triggered by galaxy–galaxy interaction. However, fitting of the remarkably flat spectral energy distribution from the ultraviolet through to the infrared suggests that an older, 500 Myr post-starburst stellar population is present along with the ongoing star formation. We conclude that the host galaxy of GRB 080517 is a valuable addition to the still very small sample of well-studied local gamma-ray burst hosts.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-17
    Description: GRB 130427A was extremely bright as a result of occurring at low redshift whilst the energetics were more typical of high-redshift gamma-ray bursts (GRBs). We collected well-sampled light curves at 1.4 and 4.8 GHz of GRB 130427A with the Westerbork Synthesis Radio Telescope (WSRT); and we obtained its most accurate position with the European Very Long Baseline Interferometry Network (EVN). Our flux density measurements are combined with all the data available at radio, optical and X-ray frequencies to perform broad-band modelling in the framework of a reverse–forward shock model and a two-component jet model, and we discuss the implications and limitations of both models. The low density inferred from the modelling implies that the GRB 130427A progenitor is either a very low metallicity Wolf–Rayet star, or a rapidly rotating, low-metallicity O star. We also find that the fraction of the energy in electrons is evolving over time, and that the fraction of electrons participating in a relativistic power-law energy distribution is less than 15 per cent. We observed intraday variability during the earliest WSRT observations, and the source sizes inferred from our modelling are consistent with this variability being due to interstellar scintillation effects. Finally, we present and discuss our limits on the linear and circular polarization, which are among the deepest limits of GRB radio polarization to date.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-08-16
    Description: GRB 130925A was an unusual gamma ray burst (GRB), consisting of three distinct episodes of high-energy emission spanning ~20 ks, making it a member of the proposed category of ‘ultralong’ bursts. It was also unusual in that its late-time X-ray emission observed by Swift was very soft, and showed a strong hard-to-soft spectral evolution with time. This evolution, rarely seen in GRB afterglows, can be well modelled as the dust-scattered echo of the prompt emission, with stringent limits on the contribution from the normal afterglow (i.e. external shock) emission. We consider and reject the possibility that GRB 130925A was some form of tidal disruption event, and instead show that if the circumburst density around GRB 130925A is low, the long duration of the burst and faint external shock emission are naturally explained. Indeed, we suggest that the ultralong GRBs as a class can be explained as those with low circumburst densities, such that the deceleration time (at which point the material ejected from the nascent black hole is decelerated by the circumburst medium) is ~20 ks, as opposed to a few hundred seconds for the normal long GRBs. The increased deceleration radius means that more of the ejected shells can interact before reaching the external shock, naturally explaining both the increased duration of GRB 130925A, the duration of its prompt pulses, and the fainter-than-normal afterglow.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-07-20
    Description: We present Herschel /PACS observations of the nearby ( z  = 0.1055) dwarf galaxy that has hosted the long gamma-ray burst (LGRB) 031203. Using the PACS data, we have been able to place constraints on the dust temperature, dust mass, total infrared (IR) luminosity and IR-derived star formation rate (SFR) for this object. We find that the GRB host galaxy (GRBH) 031203 has a total IR luminosity of 3 10 10  L placing it in the regime of the IR-luminous galaxy population. Its dust temperature and specific SFR are comparable to that of many high-redshift ( z = 0.3–2.5) IR-detected GRB hosts ( T dust  〉 40 K; sSFR 〉 10 Gyr –1 ); however, its dust-to-stellar mass ratio is lower than what is commonly seen in IR-luminous galaxies. Our results suggest that GRBH 031203 is undergoing a strong starburst episode and its dust properties are different to those of local dwarf galaxies within the same metallicity and stellar mass range. Furthermore, our measurements place it in a distinct class to the well-studied nearby host of GRB 980425 ( z = 0.0085), confirming the notion that GRB host galaxies can span a large range in properties even at similar cosmological epochs, making LGRBs an ideal tool in selecting samples of star-forming galaxies up to high redshift.
    Print ISSN: 1745-3925
    Electronic ISSN: 1745-3933
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-01-03
    Description: Abundances of galaxies at redshifts z  〉 4 are difficult to obtain from damped Lyα (DLA) systems in the sightlines of quasars (QSOs) due to the Lyα forest blanketing and the low number of high-redshift QSOs known to date. Gamma-ray bursts (GRBs) with their higher luminosity are well suited to study galaxies out to the formation of the first stars at z  〉 10. The large wavelength coverage of the X-shooter spectrograph makes it an excellent tool to study the interstellar medium of high-redshift galaxies, in particular if the redshift is not known beforehand. In this paper, we determine the properties of a GRB host at z  = 4.667 23 from absorption lines combined with X-ray and optical imaging data. This is one of the highest redshifts where a detailed analysis with medium-resolution data is possible. We measure a relatively high metallicity of [S/H] = –1.1 ± 0.2 for a galaxy at this redshift. Assuming ultraviolet pumping as origin for the fine-structure lines, the material observed is between 0.3 and 1.0 kpc from the GRB. The extinction determined by the spectral slope from X-rays to the infrared shows a moderate value of A V  = 0.13 ± 0.05 mag and relative abundances point to a warm disc extinction pattern. Low- and high-ionization as well as fine-structure lines show a complicated kinematic structure probably pointing to a merger in progress. We also detect one intervening system at z  = 2.18. GRB-DLAs have a shallower evolution of metallicity with redshift than QSO absorbers and no evolution in their H i column density or ionization fraction. GRB hosts at high redshifts seem to continue the trend of the metallicity–luminosity relation towards lower metallicities but the sample is still too small to draw a definite conclusion. While the detection of GRBs at z  〉 4 with current satellites is still difficult, they are very important for our understanding of the early epochs of star and galaxy formation.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-05-08
    Description: The intrinsic X-ray emission of gamma-ray bursts (GRBs) is often found to be absorbed over and above the column density through our own Galaxy. The extra component is usually assumed to be due to absorbing gas lying within the host galaxy of the GRB itself. There is an apparent correlation between the equivalent column density of hydrogen, N H,intrinsic (assuming it to be at the GRB redshift), and redshift, z , with the few z  〉 6 GRBs showing the greatest intrinsic column densities. We investigate the N H, intrinsic - z relation using a large sample of Swift GRBs, as well as active galactic nuclei and quasar samples, paying particular attention to the spectral energy distributions of the two highest redshift GRBs. Various possible sample biases and systematics that might produce such a correlation are considered, and we conclude that the correlation is very likely to be real. This may indicate either an evolutionary effect in the host galaxy properties, or a contribution from gas along the line of sight, in the diffuse intergalactic medium (IGM) or intervening absorbing clouds. Employing a more realistic model for IGM absorption than in previous works, we find that this may explain much of the observed opacity at z 3 providing it is not too hot, likely between 10 5 and 10 6.5 K, and moderately metal enriched, Z  ~ 0.2 Z . This material could therefore constitute the warm–hot intergalactic medium. However, a comparable level of absorption is also expected from the cumulative effect of intervening cold gas clouds, and given current uncertainties it is not possible to say which, if either, dominates. At lower redshifts, we conclude that gas in the host galaxies must be the dominant contributor to the observed X-ray absorption.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-03-23
    Description: For gamma-ray burst 100901A, we have obtained Gemini-North and Very Large Telescope optical afterglow spectra at four epochs: 1 h, 1 d, 3 d and 1 week after the burst, thanks to the afterglow remaining unusually bright at late times. Apart from a wealth of metal resonance lines, we also detect lines arising from fine-structure levels of the ground state of Fe ii , and from metastable levels of Fe ii and Ni ii at the host redshift ( z  = 1.4084). These lines are found to vary significantly in time. The combination of the data and modelling results shows that we detect the fall of the Ni ii   4 F 9/2 metastable level population, which to date has not been observed. Assuming that the population of the excited states is due to the ultraviolet radiation of the afterglow, we estimate an absorber distance of a few hundred pc. This appears to be a typical value when compared to similar studies. We detect two intervening absorbers ( z  = 1.3147, 1.3179). Despite the wide temporal range of the data, we do not see significant variation in the absorption lines of these two intervening systems.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-12-18
    Description: In this paper, we present a combined analysis of data obtained with the Hubble Space Telescope ( HST ), Very Large Telescope (VLT) and Swift X-ray telescope of the intermediate-mass black hole ESO 243–49 HLX-1 that were taken two months apart between 2010 September and November. Previous separate analyses of these data found that they were consistent with an irradiated accretion disc with contribution from either a very young or very old stellar population, and also indicated that the optical flux of the HLX-1 counterpart could be variable. Such variability could only be attributed to a varying accretion disc, so simultaneous analysis of all data sets should break the degeneracies in the model fits. We thus simultaneously fit the broad-band spectral energy distribution (SED) from near-infrared through to X-ray wavelengths of the two epochs of data with a model consisting of an irradiated accretion disc and a stellar population. We show that this combined analysis rules out an old stellar population, finding that the SED is dominated by emission from an accretion disc with moderate reprocessing in the outer disc around an intermediate-mass black hole imbedded in a young (~20 Myr) stellar cluster with a mass of ~10 5 M . We also place an upper limit on the mass of an additional hidden old stellar population of ~10 6 M . However, optical r ' -band observations of HLX-1 obtained with the Gemini-South telescope covering part of the decay from a later X-ray outburst are consistent with constant optical flux, indicating that the observed variability between the HST and VLT observations could be spurious caused by differences in the background subtraction applied to the two optical data sets. In this scenario, the contribution of the stellar population, and thus the stellar mass of the cluster, may be higher. Nonetheless, variability of 〈50 per cent cannot be ruled out by the Gemini data and thus they are still consistent within the errors with an exponential decay similar to that observed in X-rays.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-12-18
    Description: A significant proportion (~30 per cent) of the short-duration gamma-ray bursts (SGRBs) localized by Swift have no detected host galaxy coincident with the burst location to deep limits, and also no high-likelihood association with proximate galaxies on the sky. These SGRBs may represent a population at moderately high redshifts ( z   1), for which the hosts are faint, or a population where the progenitor has been kicked far from its host or is sited in an outlying globular cluster. We consider the afterglow and host observations of three ‘hostless’ bursts (GRBs 090305A, 091109B and 111020A), coupled with a new observational diagnostic to aid the association of SGRBs with putative host galaxies to investigate this issue. Considering the well localized SGRB sample, 7/25 SGRBs can be classified as ‘hostless’ by our diagnostic. Statistically, however, the proximity of these seven SGRBs to nearby galaxies is higher than is seen for random positions on the sky. This suggests that the majority of ‘hostless’ SGRBs have likely been kicked from proximate galaxies at moderate redshift. Though this result still suggests only a small proportion of SGRBs will be within the Advanced Laser Interferometer Gravitational Wave Observatory horizon for neutron star–neutron star (NS) or neutron star–black hole (BH) inspiral detection ( z  ~ 0.1), in the particular case of GRB 111020A a plausible host candidate is at z  = 0.02.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...