ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-12-13
    Description: It is now well established that seawater chemistry, as well as influencing non-skeletal marine precipitation (‘calcite’ and ‘aragonite seas’), has affected skeletal mineral secretion in some algal and marine invertebrate groups. Skeletal mineralogy has had a yet more profound consequence on fossil preservation. The realization that the fossil record of marine organisms with an aragonite shell is widely depleted in some shelf settings through early, effectively syn-depositional, dissolution (‘missing molluscs’ effect) has led to a re-evaluation of the composition, diversity, ecological and trophic structure of marine benthic communities. Comparisons of molluscan lagerstätten from ‘calcite’ and ‘aragonite seas’ show a similar pattern of skeletal mineralogical loss, that is, no differences are discernibly linked to changed seawater geochemistry. It is notable that the rare mollusc-rich skeletal lagerstätten faunas in the fossil record include many small individuals. Micromolluscs are quantitatively important among modern shell assemblages, yet small size is a major source of taphonomic and biodiversity loss in the fossil record. In skeletal lagerstätten faunas, micromolluscs contribute variably to mollusc biodiversity but appear particularly significant through at least to Triassic times. They highlight a further ‘missing molluscs’ effect of taphonomic loss through early dissolution.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 370: 39-47.
    Publication Date: 2012-11-29
    Description: The relatively simplistic facies models for lacustrine carbonates do not currently incorporate either the diversity of microbialite carbonate development or the influence of volcanic-related processes found in rift settings. The basic nature of the carbonate factories in these systems, whether microbial, macrophytic, skeletal or abiogenic, is not resolved. Lacustrine microbialites can develop in shallow lakes as concentrations of microbialite mounds covering many hundreds of square kilometres, or as bathymetrically controlled facies belts, but in many rift settings vent-related thermal and non-thermal carbonates (travertines and tufas) are a major component. Subaqueous vent-related carbonates, with evidence of microbial activity, can produce seismic-scale carbonate build-ups in deeper lakes or apparently more stratiform accumulations in shallow lakes. In lakes with only volcanic catchments, Mg and silica activity, coupled with high carbonate alkalinity and microbial influences, can potentially generate a complex set of mineral–microbe interactions and products, creating a unique set of challenges for predicting and understanding reservoirs in such settings.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-08
    Description: A prerequisite for plant taphonomy and palaeoecological analysis of early land plants is to understand the palaeogeomorphology of the landscapes that they inhabited. The Lower Old Red Sandstone of the Anglo-Welsh Basin was chosen to ascertain the nature of the landscapes and range and variability of potential plant habitats. Evidence is provided for dynamic, low-lying landscapes, with complex hydrology and mosaics of microenvironments. The Raglan Mudstone Formation (latest Prídolí–earliest Lochkovian) represents a mud-dominated, ephemeral dryland river system, active during short-lived high-discharge events. Plant habitats were restricted to areas with temporarily elevated water tables, suitable for plants with short life cycles (e.g. rhyniophytes). The St. Maughans Formation (early Lochkovian) represents a sand-dominated, perennial trunk channel river system, with an overall wetter, more stable landscape. Plant habitats extended into areas of permanently elevated water tables, where plants with a more extensive vegetative growth stage survived (e.g. zosterophylls). In association with evidence from the plant fossil record, this leads to the hypothesis that during the latest Silurian to earliest Devonian the landscapes across the southern margins of Laurussia were too hostile (overall moisture deficient and unstable) for plants of higher organization than rhyniophytes to establish, despite their radiation across palaeoequatorial latitudes much earlier.
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-01
    Description: Current classifications of carbonate platforms use depositional gradient as the main criterion for separating systems into two end-member types, ramps and flat-topped platforms (FTPs). However, many examples do not conform to this simple classification. To investigate why this is and to better understand probable controls on platform development, we have used a series of 2D numerical forward model runs to investigate how sediment production, diffusional sediment transport, and other controls such as tectonic subsidence, antecedent topography, and relative sea-level oscillation interact to determine platform geometry. Modeling results reaffirm that rates of down-dip sediment transport relative to rates of autochthonous production are a critical factor in maintaining a ramp profile in stable cratonic settings under a constant rate of relative sea-level rise. Type of carbonate production versus water-depth curve, for example euphotic versus oligophotic, is not a significant control in our model cases. Both euphotic and oligophotic production profiles produce FTPs when diffusion coefficients are low relative to production rates, and ramps when diffusion coefficients are relatively high. These results suggest a continuum of platform types, ranging from transport-dominated, low-gradient systems at one end of the spectrum, to in situ accumulation dominated systems at the other. A system may be transport-dominated because high-energy processes are able to break down and transport even bound sediment, or because carbonate factories produce only sediment that is easily transportable under even low-energy conditions. Time evolution is also probably important. Initially low gradient systems will, in the absence of sufficiently high sediment transport rates, tend to evolve towards high-gradient flat-topped steep-margined platforms. Many observed or inferred platform geometries are therefore likely to be transient forms, and this could complicate interpretation. Investigating how basin bathymetry and style of subsidence control platform geometry suggests that, in transport-dominated systems, strata simply drape the underlying topography, and that pre-existing breaks of slope and differential fault subsidence are a stronger control on platform geometry in in situ accumulation dominated systems. Rotational subsidence tends to create transport-dominated systems during rotation as the topographic gradient increases and transport rate increases and outpaces in situ production rate. Relative sea-level oscillations tend to move the locus of sediment production laterally along any slope present on the platform, distributing the sediment accumulation across the whole width of the platform, suppressing progradation and steepening, and so favoring development of low-gradient systems. Based on all these results, we suggest that a simple cutoff classification into ramp and flat-topped platform types can still be useful in some circumstances, but a more meaningful approach may be to describe and predict platform strata in terms of a multiple-dimension platform parameter space containing a continuum of geometries controlled by sediment production, sediment diffusion coefficient, antecedent topography, differential subsidence effects, relative sea-level oscillations and perhaps other as yet unappreciated controls.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-04-06
    Description: Hierarchies of cyclicity have been described from a wide variety of carbonate platform strata and are assumed to be a consequence of Milankovitch-forced variations in accommodation, although descriptions of hierarchical strata, including ‘cycles’ and what they constitute, are typically qualitative, subjective, and in some cases difficult to reproduce. One reason for this is the lack of any detailed definition of what constitutes a hierarchy, as well as the implicit and largely untested nature of the assumptions underpinning most interpretations of hierarchical strata. In this study we aim to investigate the response of depositional systems if they were to behave in the way implied by sequence stratigraphic (hierarchical) models, to clearly state the assumptions of these models, and illustrate the consequences of these assumptions when they are employed in a simple, internally-consistent forward model with plausible parameters. We define hierarchies, in both the time-domain (chronostratigraphic) and thickness-domain (stratigraphic), as two or more high-frequency sequences (HFSs) in which there exists a repeated trend of decreasing high-frequency sequence thickness such that within a single low-frequency sequence (LFS) each high-frequency sequence is thinner than the previous sequence. Based on this definition, results from 110 000 numerical model runs suggest that ordered forcing via cyclical eustatic sea-level oscillations rarely results in an easily identifiable hierarchy of stacked cycles. Hierarchies measured in the chronostratigraphic time-domain occur in only 9% of model run cases, and in 15% of cases when measured in the thickness-domain, suggesting that vertical thickness trends are probably not a useful way to identify products of ordered periodic external forcing. Variability in relative forcing periodicity results in significant variation in both HFS and LFS thickness trends making accurate identification of hierarchy and any forcing controls from thickness data alone very difficult. Comparison between model results and outcrop sections suggests that hierarchies are often assumed to be present despite a lack of adequate supporting evidence and quantitative analysis of these sections suggests that they are not hierarchical in any meaningful sense.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-23
    Description: Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption, we performed a population-based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals, respectively, from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2 446 724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of 15 independent loci, with 10 loci reaching genome-wide significance ( P 〈 5 x 10 –8 ) for ‘age at first tooth’ and 11 loci for ‘number of teeth’. Together, these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including an SNP in the protein-coding region of BMP4 (rs17563, P = 9.080 x 10 –17 ). Three of these loci, containing the genes HMGA2 , AJUBA and ADK , also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-02
    Print ISSN: 1467-5463
    Electronic ISSN: 1477-4054
    Topics: Biology , Computer Science
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-08-25
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-01
    Print ISSN: 0016-7649
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-12-22
    Print ISSN: 1527-1404
    Electronic ISSN: 1938-3681
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...