ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © 2010 The Authors. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial License. The definitive version was published in ICES Journal of Marine Science: Journal du Conseil 67 (2010): 365-378, doi:10.1093/icesjms/fsp262.
    Description: A commercial acoustic system, originally designed for seafloor applications, has been adapted for studying fish with swimbladders. The towed system contains broadband acoustic channels collectively spanning the frequency range 1.7–100 kHz, with some gaps. Using a pulse-compression technique, the range resolution of the echoes is ~20 and 3 cm in the lower and upper ranges of the frequencies, respectively, allowing high-resolution imaging of patches and resolving fish near the seafloor. Measuring the swimbladder resonance at the lower frequencies eliminates major ambiguities normally associated with the interpretation of fish echo data: (i) the resonance frequency can be used to estimate the volume of the swimbladder (inferring the size of fish), and (ii) signals at the lower frequencies do not depend strongly on the orientation of the fish. At-sea studies of Atlantic herring demonstrate the potential for routine measurements of fish size and density, with significant improvements in accuracy over traditional high-frequency narrowband echosounders. The system also detected patches of scatterers, presumably zooplankton, at the higher frequencies. New techniques for quantitative use of broadband systems are presented, including broadband calibration and relating target strength and volume-scattering strength to quantities associated with broadband signal processing.
    Description: The research was supported by the US Office of Naval Research, grants number N00014-04-1-0440 and N00014-04-1-0475, NOAA/CICOR cooperative agreement NA17RJ1223, NOAA/ National Marine Fisheries Service, and the J. Seward Johnson Chair of the WHOI Academic Programs Office.
    Keywords: Acoustic scattering ; Broadband ; Echosounder ; Fish ; Resonance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 4461-4475, doi:10.1121/1.3701876.
    Description: A controlled laboratory experiment of broadband acoustic backscattering from live squid (Loligo pealeii) was conducted using linear chirp signals (60–103 kHz) with data collected over the full 360° of orientation in the lateral plane, in 〈1° increments. The acoustic measurements were compared with an analytical prolate spheroid model and a three-dimensional numerical model with randomized squid shape, both based on the distorted-wave Born approximation formulation. The data were consistent with the hypothesized fluid-like scattering properties of squid. The contributions from the front and back interfaces of the squid were found to dominate the scattering at normal incidence, while the arms had a significant effect at other angles. The three-dimensional numerical model predictions out-performed the prolate spheroid model over a wide range of orientations. The predictions were found to be sensitive to the shape parameters, including the arms and the fins. Accurate predictions require setting these shape parameters to best describe the most probable squid shape for different applications. The understanding developed here serves as a basis for the accurate interpretation of in situ acoustic scattering measurements of squid.
    Description: Funding for this research was provided by the Taiwan Merit Scholarship (NSC-095-SAF-I-564-021-TMS) and the Academic Program Office at WHOI.
    Keywords: Acoustic signal processing ; Acoustic variables measurement ; Acoustic wave scattering ; Backscatter ; Numerical analysis
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © Acoustical Society of America, 2014. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 136 (2014): 90, doi:10.1121/1.4881925.
    Description: The relative contributions of various physical factors to producing non-Rayleigh distributions of echo magnitudes in a waveguide are examined. Factors that are considered include (1) a stochastic, range-dependent sound-speed profile, (2) a directional acoustic source, (3) a variable scattering response, and (4) an extended scattering volume. A two-way parabolic equation model, coupled with a stochastic internal wave model, produces realistic simulations of acoustic propagation through a complex oceanic sound speed field. Simulations are conducted for a single frequency (3 kHz), monostatic sonar with a narrow beam (5° −3 dB beam width). The randomization of the waveguide, range of propagation, directionality of the sonar, and spatial extent of the scatterers each contribute to the degree to which the echo statistics are non-Rayleigh. Of critical importance are the deterministic and stochastic processes that induce multipath and drive the one-way acoustic pressure field to saturation (i.e., complex-Gaussian statistics). In this limit predictable statistics of echo envelopes are obtained at all ranges. A computationally low-budget phasor summation can successfully predict the probability density functions when the beam pattern and number of scatterers ensonified are known quantities.
    Description: This research was funded, in part, by the Office of Naval Research Grant Nos. N00014-10-1-0127 and N00014-11-1-0241 and the Oceanographer of the U.S. Navy.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © The Authors, 2012. This article is posted here by permission of NRC Research Press for personal use, not for redistribution. The definitive version was published in Canadian Journal of Fisheries and Aquatic Sciences 69 (2012): 854-868, doi:10.1139/f2012-013.
    Description: Recently developed broadband acoustic methods were used to study mixed assemblages of fish spanning a wide range of lengths and species. Through a combination of resonance classification and pulse-compression signal processing, which provides for high-range resolution, a modified commercial broadband echosounder was demonstrated to provide quantitative information on the spatial distribution of the individual size classes within an assemblage. In essence, this system spectrally resolves the different size classes of fish that are otherwise not resolved spatially. This method reveals new insights into biological processes, such as predator–prey interactions, that are not obtainable through the use of a conventional narrowband high-frequency echosounder or previous broadband systems. A recent study at sea with this system revealed aggregations containing bladdered fish 15–30 cm in length (Atlantic herring (Clupea harengus) and silver hake (Merluccius bilinearis)) and a variety of species of smaller fish 2–5 cm in length. These observations infer that the smaller 2–5 cm fish can be colocated in the same aggregations as their predator, the larger silver hake, as well as pre-spawning herring. While this technological advancement provides more information, there remain challenges in interpreting the echo spectra in terms of meaningful biological quantities such as size distribution and species composition.
    Description: This research was supported by the US Office of Naval Research (grant Nos. N00014-04-1-0440 and N00014-10-1-0127), NOAA – National Marine Fisheries Service; and the J. Seward Johnson Chair of the WHOI Academic Programs Office.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-05
    Description: Stanton, T. K., Chu, D., Jech, J. M., and Irish, J. D. 2010. New broadband methods for resonance classification and high-resolution imagery of fish with swimbladders using a modified commercial broadband echosounder. – ICES Journal of Marine Science, 67: 365–378. A commercial acoustic system, originally designed for seafloor applications, has been adapted for studying fish with swimbladders. The towed system contains broadband acoustic channels collectively spanning the frequency range 1.7–100 kHz, with some gaps. Using a pulse-compression technique, the range resolution of the echoes is ∼20 and 3 cm in the lower and upper ranges of the frequencies, respectively, allowing high-resolution imaging of patches and resolving fish near the seafloor. Measuring the swimbladder resonance at the lower frequencies eliminates major ambiguities normally associated with the interpretation of fish echo data: (i) the resonance frequency can be used to estimate the volume of the swimbladder (inferring the size of fish), and (ii) signals at the lower frequencies do not depend strongly on the orientation of the fish. At-sea studies of Atlantic herring demonstrate the potential for routine measurements of fish size and density, with significant improvements in accuracy over traditional high-frequency narrowband echosounders. The system also detected patches of scatterers, presumably zooplankton, at the higher frequencies. New techniques for quantitative use of broadband systems are presented, including broadband calibration and relating target strength and volume-scattering strength to quantities associated with broadband signal processing.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...