ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
    Publication Date: 2013-09-23
    Description: In response to the need for improving our understanding of the evolution and the interannual variability of the winter Arctic stratosphere, in January 2009 a Ground-Based Millimeter-wave Spectrometer (GBMS) was installed at the Network for the Detection of Atmospheric Composition Change (NDACC) site in Thule (76.5° N, 68.8° W), Greenland. In this work, stratospheric GBMS O3 and HNO3 vertical profiles obtained from Thule during the winters 2010 (HNO3 only), 2011 and 2012 are characterized and intercompared with co-located measurements of the Aura Microwave Limb Sounder (MLS) experiment. Using a recently developed algorithm based on Optimal Estimation, we find that the GBMS O3 retrievals show good sensitivity (〉 80%) to atmospheric variations between ~ 17 and ~ 50 km, where their 1σ uncertainty is estimated to be the larger of ~ 11% or 0.2 ppmv. Similarly, HNO3 profiles can be considered for scientific use between ~ 17 and ~ 45 km altitude, with a 1σ uncertainty that amounts to the larger of 15% or 0.2 ppbv. Comparisons with Aura MLS version 3.3 observations show that, on average, GBMS O3 mixing ratios are biased negatively with respect to MLS throughout the stratosphere, with differences ranging between ~ 0.3 ppmv (8%) and 0.9 ppmv (18%) in the 17–50 km vertical range. GBMS HNO3 values display instead a positive bias with respect to MLS up to 26 km, reaching a maximum of ~ 1 ppbv (10%) near the mixing ratio profile peak. O3 and HNO3 values from the two datasets prove to be well correlated at all altitudes, although their correlations worsen at the lower end of the altitude ranges considered. Column contents of GBMS and MLS O3 (from 20 km upwards) and HNO3 (from 17 km upwards) correlate very well and indicate that GBMS measurements can provide valuable estimates of column interannual and seasonal variations for these compounds.
    Print ISSN: 1867-1381
    Electronic ISSN: 1867-8548
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-07-27
    Description: The Ground-Based Millimeter-wave Spectrometer (GBMS) was designed and built at the State University of New York at Stony Brook in the early 1990s and since then has carried out many measurement campaigns of stratospheric O3, HNO3, CO and N2O at polar and mid-latitudes. Its HNO3 data set shed light on HNO3 annual cycles over the Antarctic continent and contributed to the validation of both generations of the satellite-based JPL Microwave Limb Sounder (MLS). Following the increasing need for long-term data sets of stratospheric constituents, we resolved to establish a long-term GMBS observation site at the Arctic station of Thule (76.5° N, 68.8° W), Greenland, beginning in January 2009, in order to track the long- and short-term interactions between the changing climate and the seasonal processes tied to the ozone depletion phenomenon. Furthermore, we updated the retrieval algorithm adapting the Optimal Estimation (OE) method to GBMS spectral data in order to conform to the standard of the Network for the Detection of Atmospheric Composition Change (NDACC) microwave group, and to provide our retrievals with a set of averaging kernels that allow more straightforward comparisons with other data sets. The new OE algorithm was applied to GBMS HNO3 data sets from 1993 South Pole observations to date, in order to produce HNO3 version 2 (v2) profiles. A sample of results obtained at Antarctic latitudes in fall and winter and at mid-latitudes is shown here. In most conditions, v2 inversions show a sensitivity (i.e., sum of column elements of the averaging kernel matrix) of 100 ± 20 % from 20 to 45 km altitude, with somewhat worse (better) sensitivity in the Antarctic winter lower (upper) stratosphere. The 1σ uncertainty on HNO3 v2 mixing ratio vertical profiles depends on altitude and is estimated at ~15 % or 0.3 ppbv, whichever is larger. Comparisons of v2 with former (v1) GBMS HNO3 vertical profiles, obtained employing the constrained matrix inversion method, show that v1 and v2 profiles are overall consistent. The main difference is at the HNO3 mixing ratio maximum in the 20–25 km altitude range, which is smaller in v2 than v1 profiles by up to 2 ppbv at mid-latitudes and during the Antarctic fall. This difference suggests a better agreement of GBMS HNO3 v2 profiles with both UARS/ and EOS Aura/MLS HNO3 data than previous v1 profiles.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-03-25
    Description: In response to the need for improving our understanding of the evolution and the interannual variability of the winter Arctic stratosphere, in January 2009 a ground-based millimeter-wave spectrometer (GBMS) was installed at the Network for the Detection of Atmospheric Composition Change (NDACC) site in Thule (76.5° N, 68.8° W), Greenland. In this work, stratospheric GBMS O3 and HNO3 vertical profiles obtained from Thule during winters 2010 (HNO3 only), 2011 and 2012 are characterized and intercompared with co-located Aura MLS measurements. Using a recently developed algorithm based on Optimal Estimation, we find that the GBMS O3 retrievals show good sensitivity (〉 80%) to atmospheric variations between ~ 17 and ~ 50 km, where their 1σ uncertainty is estimated to be the larger of ~ 11% or 0.2 ppmv. Similarly, HNO3 profiles can be considered for scientific use between ~ 17 and ~ 45 km altitude, with a 1σ uncertainty that amounts to the larger of 15% or 0.2 ppbv. Comparisons with Aura MLS version 3.3 observations show that, on average, GBMS O3 mixing ratios are biased low with respect to MLS throughout the stratosphere, with differences ranging between ~ 0.3 ppmv (8%) and 0.9 ppmv (18%) in the 17–50 km vertical range. GBMS HNO3 values display instead a high bias with respect to MLS up to 26 km, reaching a maximum of ~ 1 ppbv (10%) near the mixing ratio profile peak. O3 and HNO3 values from the two data sets prove to be well correlated at all altitudes, although their correlations worsen at the lower end of the altitude ranges considered. Column contents of GBMS and MLS O3 (from 20 km upwards) and HNO3 (from 17 km upwards) correlate very well and indicate that GBMS measurements can provide valuable estimates of column interannual and seasonal variations for these compounds.
    Electronic ISSN: 1867-8610
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-01-18
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-12-18
    Description: The 2009 Arctic sudden stratospheric warming (SSW) was the most intense event of this kind ever observed. Unique ground-based measurements of middle atmospheric profiles for temperature, O3, CO, and N2O obtained at Thule (76.5°N, 68.8°W), Greenland, in the period January – early March are used to show the evolution of the 2009 SSW in the region of its maximum intensity. The first sign of the SSW was detected at θ~2000 K on January 19, when a rapid decrease in CO mixing ratio took place. The first evidence of a temperature increase was observed at the same level on 22 January, the earliest date on which lidar measurements reached above ~50 km. The warming propagated from the upper to the lower stratosphere in 7 days and the record maximum temperature of 289 K was observed between 1300 and 1500 K potential temperature on 22 January. A strong vortex splitting was associated with the SSW. Stratospheric backward trajectories indicate that airmasses arriving to Thule during the warming peak underwent a rapid compression and an intense adiabatic warming of up to 50 K. The rapid advection of air from the extra-tropics was also occasionally observed to produce elevated values of N2O mixing ratio. Starting from mid-February the temperature profile and the N2O mixing ratio returned to the pre-warming values in the mid and upper stratosphere, indicating the reformation of the vortex at these levels. In late winter, vertical descent from starting altitudes of ~60 km is estimated from CO profiles to be 0.25±0.05 km/day.
    Description: Published
    Description: D24315
    Description: 1.7. Osservazioni di alta e media atmosfera
    Description: 1.10. TTC - Telerilevamento
    Description: JCR Journal
    Description: open
    Keywords: sudden stratospheric warming ; winter polar stratosphere ; temperature ; O3 ; N2O ; CO ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-18
    Description: Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC) station at Thule Air Base (76.5°N, 68.8°W), on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY), in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3) which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS) used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the middle atmosphere, during the first part of winter 2008-2009 the cold polar vortex allowed for the formation of polar stratospheric clouds (PSCs) which were observed above Thule by means of the lidar. This period was also characterized by GBMS measurements of low values of O3 due to the catalytic reactions prompted by the PSCs. In mid- January, as the most intense Sudden Stratospheric Warming event ever observed in the Arctic occurred, GBMS and lidar measurements of O3, N2O, CO and temperature described its evolution as it propagated from the upper atmosphere to the lower stratosphere.
    Description: Published
    Description: S0323
    Description: 2A. Fisica dell'alta atmosfera
    Description: 7A. Geofisica di esplorazione
    Description: JCR Journal
    Description: open
    Keywords: polar atmosphere ; NDACC ; radiative budget ; stratospheric ozone ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation ; 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-18
    Description: The Arctic region plays a central role in the global climate system. Modifications in the Arctic radiative budget may strongly influence large scale atmospheric and oceanic circulation. The evaluation of the surface energy balance sensitivity to variations in several parameters, such as surface temperature, water vapour content, surface albedo, and atmospheric aerosols, is one of the main issues in assessing how the Arctic will respond to future climate changes. The NDACC station at Thule Air Base (76.5°N, 68.8°W) is equipped with a variety of instruments for the measurement of the radiative fluxes at the surface, aerosol optical properties, water vapour atmospheric content, and meteorological parameters. A Yankee Environmental System Total Solar Pyranometer (YES-TSP) and an Eppley pyrgeometer (PIR) are installed at Thule for the measurement of the global shortwave and longwave downward irradiances at the surface. The TSP was installed in 2002, while the PIR in 2009. A Cimel Sunphotometer measures aerosol optical properties and water vapour columnar content; the Cimel is part of the Aerosol Robotic Network and was installed in 2007. In winter, the water vapour columnar content is also measured at Thule with a millimeter-wave spectrometer (GBMS) operating in the 230-280 GHz range. GBMS measurements have been carried out during several winters between 2002 and 2011. A meteorological station, which measures surface temperature and pressure, relative humidity, wind speed and direction is also continuously operational at Thule. Satellite observations of the surface shortwave albedo obtained from MODIS have been used together with ground-based measurements. Four years (2007 to 2010) of surface shortwave irradiance at the surface, aerosol optical properties, and water vapour have been combined with satellite observations of the surface albedo. Radiative transfer model calculations are used to reproduce the observed shortwave fluxes and to separate the effects of the different parameters in modulating the cloud-free downward shortwave radiation at the ground. Water vapour is the main factor affecting the cloud-free shortwave irradiance at the surface. Its column value varies between 0.1 and 1.4 cm during the period spring to early autumn. Water vapour produces a reduction of the surface shortwave flux by -(212%). The surface albedo varies between 0.05 and 0.66 in the period March to September, with values larger than 0.5 in spring and smaller than 0.1 in summer. In spring the surface albedo induces an increase by +(2-4.5%) in the downward shortwave radiation. The aerosol optical depth at 500 nm is generally lower than 0.2; atmospheric aerosols produce a reduction in the shortwave radiation down to -5%. On annual base, the mean effects of water vapour and surface albedo are estimated to be –(10-11) Wm-2 and +(2-3) Wm-2, respectively. The temperature and humidity profiles in the troposphere have the strongest influence on the cloud-free downwelling longwave irradiance. In wintertime, in absence of solar radiation, the longwave fluxes dominate the surface radiation budget. GBMS water vapour measurements from winters 2009 to 2011 have been used, together with surface humidity and temperature, to investigate the relative influence of these factors in affecting the downwelling longwave irradiance.
    Description: Unpublished
    Description: Réunion Island, Francia
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 1.10. TTC - Telerilevamento
    Description: open
    Keywords: shortwave infrared ; longwave infrared ; radiation budget ; aerosols ; water vapour ; Greenland ; Arctic ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-12-18
    Description: This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (s) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (∆SWA), wv (DSWwv), and aerosols (∆SWs) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as -100 Wm-2 (-18%). The seasonal change of A produces an increase of SW by up to +25 Wm-2 (+4.5%). The annual mean radiative effect is estimated to be -(21–22) Wm-2 for wv, and +(2–3) Wm-2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ∆SWwv by 0.93 Wm-2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by -0.027, with a corresponding decrease in ∆SWA by 0.41 Wm-2 (-14.9%). Atmospheric aerosols produce a reduction of SW as low as -32 Wm-2 (-6.7%). The instantaneous aerosol radiative forcing (RFs) reaches values of -28 Wm-2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEs) for solar zenith angles between 55 and 70 is estimated to be (-120.6 ± 4.3) for 0.1〈A〈0.2, and (-41.2 ± 1.6) Wm-2 for 0.5〈A〈0.6.
    Description: Published
    Description: 953-969
    Description: 1.10. TTC - Telerilevamento
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Arctic radiative balance ; Surface albedo ; Atmospheric aerosols ; Water vapour ; Direct radiative forcing ; Arctic amplification ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.05. Radiation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-12-18
    Description: Several instruments are operational at Thule Air Base (76.5oN, 68.8oW) as part of the Network for Detection of Atmospheric Composition Change. A lidar was installed in 1990 and has been operational particularly during the winter season. Lidar measurements are used to derive the aerosol backscatter ratio between about 10 and 35 km, and the atmospheric temperature (T) profile from 25 up to 70 km, with a resolution of 150 m. A ground-based millimeter-wave spectrometer (GBMS) was installed at Thule in 2001, and has been operational during the winter seasons of 2001-2003 and 2009-2011. The GBMS permits to derive the atmospheric concentration profiles of different chemical species, such as O3, CO, N2O, and HNO3, between about 15 and 80 km at a resolution of 6-8 km. The Arctic winter stratosphere is characterized by a high variability, and detection of trends is particularly difficult. The evolution of the vortex and the temperatures in the lower stratosphere has a large impact on formation of Polar Stratospheric Clouds (PSC) and on the stratosphere chemical evolution. Coldest winters occurred in 1999-2000, and 2004-2005. Intensive measurement campaigns were conducted at Thule Air Base during winters 2008-2009 and 2010-2011. These two winters have been deeply different in their thermal, dynamical and chemical evolution. The 2008-2009 Arctic winter has been characterized by the most intense Sudden Stratospheric Warming (SSW) event ever observed, and the maximum of this warming was detected over Greenland. Thus, ground-based observations of the thermal structure and chemical composition of the middle atmosphere from the station at Thule Air Base have permitted to show the evolution of the phenomenon and its interactions with the dynamical structure of the polar vortex in the region of maximum warming. On the contrary, the 2010-2011 has been a very cold winter, and polar stratospheric clouds have been detected by lidar from mid-February to mid-March at Thule Air Base. This very cold winter, together with the massive formation of PSCs, has caused the record stratospheric ozone loss that is occurring in spring 2011 in the Arctic. In this study, we will present a summary of the measurements of the thermal and chemical stratospheric structure obtained at Thule Air Base between 1990 and 2011, with special attention to the two winters of 2008-2009 and 2010-2011.
    Description: Unpublished
    Description: Sheraton Denver Downtown Hotel, Denver, CO, USA
    Description: 1.8. Osservazioni di geofisica ambientale
    Description: 1.10. TTC - Telerilevamento
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: open
    Keywords: stratospheric composition ; ozone ; nitric acid ; sudden stratospheric warming ; Greenland ; Arctic ozone loss ; lidar observations ; microwave remote sensing ; 01. Atmosphere::01.01. Atmosphere::01.01.99. General or miscellaneous ; 01. Atmosphere::01.01. Atmosphere::01.01.01. Composition and Structure
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...