ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-04
    Description: Gas generation is a commonly hypothesized mechanism for the development of high-magnitude overpressure. However, overpressures developed by gas generation have been rarely measured in situ, with the main evidence for such overpressures coming from source rock microfractures, the physical necessity of overpressures for primary migration, laboratory experiments, and numerical modeling. Indeed, previous in-situ observations suggest that gas generation only creates highly localized overpressures within rich source rocks. Pore-fluid pressure data and sonic velocity–vertical effective stress plots from 30 wells reveal that overpressures in the northern Malay Basin are primarily generated by fluid expansion and are located basinwide within the Miocene 2A, 2B, and 2C source rock formations. The overpressures are predominantly associated with gas sampled in more than 83% of overpressure measurements and have a sonic-density response consistent with gas generation. The association of fluid expansion overpressures with gas, combined with the sonic-density response to overpressure and a regional geology that precludes other overpressuring mechanisms, provides convincing in-situ evidence for basinwide gas generation overpressuring. Overpressure magnitude analysis suggests that gas generation accounts for approximately one-half to two-thirds of the measured excess pore pressure in the region, with the remainder being generated by coincident disequilibrium compaction. Thus, the data herein suggest that gas generation, if acting in isolation, is producing a maximum pressure gradient of 15.3 MPa/km (0.676 psi/ft) and not lithostatic magnitudes as commonly hypothesized. The gas generation overpressures in this article are not associated with a significant porosity anomaly and represent a major drilling hazard, with traditional pore-pressure prediction techniques underestimating pressure gradients by 2.3 ± 1.5 MPa/km (0.1 ± 0.07 psi/ft).
    Print ISSN: 0149-1423
    Electronic ISSN: 0149-1423
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-08
    Description: The northern Mergui Basin (Andaman Sea) contains east-northeast–west-southwest– to northeast-southwest–striking normal fault–bound basins, and north-northwest–south-southeast–trending strike-slip faults. The two largest strike-slip faults (Manora and Mergui) pass into extensional or transtensional basins at their tips, consistent with dextral offset. The faults provide examples of early stage pull-apart basin development at fault tips instead of the more common model for development at releasing bends. Offset of isochron markers for the Ranong Formation indicate that ~8 km of dextral offset has occurred along the Mergui fault and 4.5 km of dextral offset has occurred on the Manora fault. The strike-slip faults and associated extensional faults formed relatively late for the history of the entire Mergui Basin during the Early Miocene. The northern part of the Mergui Basin developed after a phase of west-northwest-east-southeast extension during the Oligocene in the Mergui Basin to the south, indicating a rotation in the extension direction toward the north-northwest–south-southeast with time. The basin is part of a major transtensional system involving the Sumatra, West Andaman, and Sagaing faults that accommodated the northern motion of western Myanmar as India moved north relative to Southeast Asia. Fault activity in the northern Mergui Basin decreased significantly when the broad zone of Early Miocene transtension became focused on the Alcock and Sewell Rises during the Middle Miocene, and the West Andaman and Sagaing faults began to develop and interacted in a large pull-apart geometry with the Shan Scarp Fault, and later (Late Miocene or Pliocene) with the Sagaing Fault.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-01
    Description: Deriving global parameters for velocity-based pore pressure predictions in a complex overpressure origins regime is normally difficult and nonrobust. Applying large variations in Eaton’s exponent is an unsatisfactory work practice for velocity-based pore pressure prediction. This study investigates an alternative potential method to reduce the variation of Eaton’s exponent values in an environment of mixed disequilibrium compaction and fluid expansion overpressure mechanisms. Using 25 input wells, the fluid expansion components are estimated using velocity-vertical effective stress plot and then subtracted from the pressure measurements to obtain the disequilibrium compaction components. Eaton’s exponents are then derived only from the disequilibrium compaction components. The spatial variation of Eaton’s exponent is greatly reduced from the range of 1–5 to the range of 1–1.9 after removing the fluid expansion components from the raw overpressure data set. A constant Eaton’s exponent of 1.44 is used throughout the field to predict the disequilibrium compaction components and the fluid expansion components are predicted from gridding of the well data. The two components are combined to produce a final pore pressure prediction profile, which yields less uncertainty than the traditional Bowers method.
    Print ISSN: 2324-8858
    Electronic ISSN: 2324-8866
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-31
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-12-19
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Tectonics, 7 (3). pp. 539-561.
    Publication Date: 2016-06-02
    Description: Out-of-sequence thrusts (OOST) are those thrusts which do not obey the foreland propagating or in-sequence deformation style. They include both isolated thrusts which develop hindward of the thrust front and sequences of break-back thrusts which propagate from the foreland to the hinterland. Two end-members of a series of OOST types are recognized: (1) older in-sequence thrusts which are reactivated along their entire length and (2) completely new thrusts which propagate through already deformed thrust sheets. Between the two end-members are thrusts composed partially of reactivated in-sequence thrust sequences and partially of new, entirely out-of-sequence segments. OOSTs can be initiated for a variety of reasons including: (1) keeping the orogenic wedge at critical taper, (2) break-back sequences from the suture zone in the overriding plate, (3) ramping to overcome a sticking point which inhibits in-sequence thrust propagation, and (4) during simultaneous displacement along two stacked thrusts culminations which bow up segment of the upper thrust may be chopped through to permit continued displacement on the upper thrust. Many different types of thrust behavior including gravity sliding, plucking, and derivation of isolated horses from ramps may mimic some of the characteristics of OOSTs. Consequently, it may be difficult to conclusively prove an OOST origin for a complex thrust geometry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...