ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (624)
Collection
Keywords
Language
Years
Year
  • 1
    Call number: AWI G3-12-0073
    Description / Table of Contents: Contents: Chapter 1: Introduction. - Chapter 2: Spatial analyses of thermokarst lakes and basins in Yedoma landscapes of the Lena Delta. - Chapter 3: Evolution of thermokarst in East Siberian ice-rich permafrost: a case study. - Chapter 4: The role of thermal erosion in the degradation of Siberian ice-rich permafrost. - Chapter 5: Synthesis.
    Description / Table of Contents: Current climate warming is affecting arctic regions at a faster rate than the rest of the world. This has profound effects on permafrost that underlies most of the arctic land area. Permafrost thawing can lead to the liberation of considerable amounts of greenhouse gases as well as to significant changes in the geomorphology, hydrology, and ecology of the corresponding landscapes, which may in turn act as a positive feedback to the climate system. Vast areas of the east Siberian lowlands, which are underlain by permafrost of the Yedoma-type Ice Complex, are particularly sensitive to climate warming because of the high ice content of these permafrost deposits.Thermokarst and thermal erosion are two major types of permafrost degradation in periglacial landscapes. The associated landforms are prominent indicators of climate-induced environmental variations on the regional scale. Thermokarst lakes and basins (alasses) as well as thermo-erosional valleys are widely distributed in the coastal lowlands adjacent to the Laptev Sea. This thesis investigates the spatial distribution and morphometric properties of these degradational features to reconstruct their evolutionary conditions during the Holocene and to deduce information on the potential impact of future permafrost degradation under the projected climate warming. The methodological approach is a combination of remote sensing, geoinformation, and field investigations, which integrates analyses on local to regional spatial scales.Thermokarst and thermal erosion have affected the study region to a great extent. In the Ice Complex area of the Lena River Delta, thermokarst basins cover a much larger area than do present thermokarst lakes on Yedoma uplands (20.0 and 2.2 %, respectively), which indicates that the conditions for large-area thermokarst development were more suitable in the past. This is supported by the reconstruction of the development of an individual alas in the Lena River Delta, which reveals a prolonged phase of high thermokarst activity since the Pleistocene/Holocene transition that created a large and deep basin. After the drainage of the primary thermokarst lake during the mid-Holocene, permafrost aggradation and degradation have occurred in parallel and in shorter alternating stages within the alas, resulting in a complex thermokarst landscape. Though more dynamic than during the first phase, late Holocene thermokarst activity in the alas was not capable of degrading large portions of Pleistocene Ice Complex deposits and substantially altering the Yedoma relief. Further thermokarst development in existing alasses is restricted to thin layers of Holocene ice-rich alas sediments, because the Ice Complex deposits underneath the large primary thermokarst lakes have thawed completely and the underlying deposits are ice-poor fluvial sands. Thermokarst processes on undisturbed Yedoma uplands have the highest impact on the alteration of Ice Complex deposits, but will be limited to smaller areal extents in the future because of the reduced availability of large undisturbed upland surfaces with poor drainage. On Kurungnakh Island in the central Lena River Delta, the area of Yedoma uplands available for future thermokarst development amounts to only 33.7 %. The increasing proximity of newly developing thermokarst lakes on Yedoma uplands to existing degradational features and other topographic lows decreases the possibility for thermokarst lakes to reach large sizes before drainage occurs.Drainage of thermokarst lakes due to thermal erosion is common in the study region, but thermo-erosional valleys also provide water to thermokarst lakes and alasses. Besides these direct hydrological interactions between thermokarst and thermal erosion on the local scale, an interdependence between both processes exists on the regional scale. A regional analysis of extensive networks of thermo-erosional valleys in three lowland regions of the Laptev Sea with a total study area of 5,800 km² found that these features are more common in areas with higher slopes and relief gradients, whereas thermokarst development is more pronounced in flat lowlands with lower relief gradients. The combined results of this thesis highlight the need for comprehensive analyses of both, thermokarst and thermal erosion, in order to assess past and future impacts and feedbacks of the degradation of ice-rich permafrost on hydrology and climate of a certain region.
    Type of Medium: Monograph available for loan
    Pages: VI, 116 S. : Ill., graph. Darst., Kt.
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-13
    Description: This dataset provides an inventory of thermo-erosional landforms and streams in three lowland areas underlain by ice-rich permafrost of the Yedoma-type Ice Complex at the Siberian Laptev Sea coast. It consists of two shapefiles per study region: one shapefile for the digitized thermo-erosional landforms and streams, one for the study area extent. Thermo-erosional landforms were manually digitized from topographic maps and satellite data as line features and subsequently analyzed in a Geographic Information System (GIS) using ArcGIS 10.0. The mapping included in particular thermo-erosional gullies and valleys as well as streams and rivers, since development of all of these features potentially involved thermo-erosional processes. For the Cape Mamontov Klyk site, data from Grosse et al. [2006], which had been digitized from 1:100000 topographic map sheets, were clipped to the Ice Complex extent of Cape Mamontov Klyk, which excludes the hill range in the southwest with outcropping bedrock and rocky slope debris, coastal barrens, and a large sandy floodplain area in the southeast. The mapped features (streams, intermittent streams) were then visually compared with panchromatic Landsat-7 ETM+ satellite data (4 August 2000, 15 m spatial resolution) and panchromatic Hexagon data (14 July 1975, 10 m spatial resolution). Smaller valleys and gullies not captured in the maps were subsequently digitized from the satellite data. The criterion for the mapping of linear features as thermo-erosional valleys and gullies was their clear incision into the surface with visible slopes. Thermo-erosional features of the Lena Delta site were mapped on the basis of a Landsat-7 ETM+ image mosaic (2000 and 2001, 30 m ground resolution) [Schneider et al., 2009] and a Hexagon satellite image mosaic (1975, 10 m ground resolution) [G. Grosse, unpublished data] of the Lena River Delta within the extent of the Lena Delta Ice Complex [Morgenstern et al., 2011]. For the Buor Khaya Peninsula, data from Arcos [2012], which had been digitized based on RapidEye satellite data (8 August 2010, 6.5 m ground resolution), were completed for smaller thermo-erosional features using the same RapidEye scene as a mapping basis. The spatial resolution, acquisition date, time of the day, and viewing geometry of the satellite data used may have influenced the identification of thermo-erosional landforms in the images. For Cape Mamontov Klyk and the Lena Delta, thermo-erosional features were digitized using both Hexagon and Landsat data; Hexagon provided higher resolution and Landsat provided the modern extent of features. Allowance of up to decameters was made for the lateral expansion of features between Hexagon and Landsat acquisitions (between 1975 and 2000).
    Keywords: BuorKhayaPensinsula; Event label; File content; File size; Latitude of event; LEN; Lena Delta, Siberia, Russia; LenaDeltaRegion; Longitude of event; MamontovKlykRegion; MULT; Multiple investigations; Reference/source; Siberia, Russia; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 24 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-13
    Description: This data set provides a high-resolution digital elevation model (DEM) of a thermokarst depression (~7 km²) on ice-complex deposits in the Arctic Lena Delta, Siberia. The DEM based on a geodetic field survey and was used for quantitative land surface analyses and detailed description of the thermokarst depression morphology. Detailed morphometrical analyses, volume calculations, and solar radiation modeling were performed and statistically analyzed by Ulrich et al. (2010) to investigate the asymmetrical thermokarst depression development and directed lake migration previously proposed by Morgenstern et al. (2008). Furthermore, the high-resolution DEM in combination with satellite data allowed detailed analyses of spatial and temporal landscape changes due to thermokarst development (Günther, 2009).
    Keywords: AWI Arctic Land Expedition; Comment; File size; Kurungnakh_Alas; Kurungnakh Island, Lena Delta, Siberia; Remote Sensing of POlar Non-glaciated and Sensitive Environments; RESPONSE; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 6 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Bartsch, Annett; Allard, Michel; Biskaborn, Boris K; Burba, George; Christiansen, Hanne Hvidtfeldt; Duguay, Claude R; Grosse, Guido; Günther, Frank; Heim, Birgit; Högström, Elin; Kääb, Andreas; Keuper, Frida; Lanckman, Jean-Pierre; Lantuit, Hugues; Lauknes, Tom Rune; Leibman, Marina O; Liu, Lin; Morgenstern, Anne; Necsoiu, Marius; Overduin, Pier Paul; Pope, Allen; Sachs, Torsten; Séjourné, Antoine; Streletskiy, Dmitry A; Strozzi, Tazio; Ullmann, Tobias; Ullrich, Matthias S; Vieira, Gonçalo; Widhalm, Barbara (2014): Requirements for monitoring of permafrost in polar regions - A community white paper in response to the WMO Polar Space Task Group (PSTG), Version 4, 2014-10-09. Austrian Polar Research Institute, Vienna, Austria, 20 pp, hdl:10013/epic.45648.d001
    Publication Date: 2023-11-16
    Description: About 50 locations ('cold spots') where permafrost (Arctic and Antarctic) in situ monitoring has been taking place for many years or where field stations are currently established (through, for example the Canadian ADAPT program) have been identified. These sites have been proposed to WMO Polar Space Task Group as focus areas for future monitoring by satellite data. Seven monitoring transects spanning different permafrost types have been proposed in addition.
    Keywords: Changing Permafrost in the Arctic and its Global Effects in the 21st Century; Country; Elevation, maximum; Elevation, mean; Elevation, minimum; File name; Identification; LATITUDE; Latitude 2; LONGITUDE; Longitude 2; PAGE21; Permafrost; Persistent Identifier; Site
    Type: Dataset
    Format: text/tab-separated-values, 572 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Morgenstern, Anne; Ulrich, Mathias; Günther, Frank; Roessler, Sebastian; Fedorova, Irina V; Rudaya, Natalia; Wetterich, Sebastian; Boike, Julia; Schirrmeister, Lutz (2013): Evolution of thermokarst in East Siberian ice-rich permafrost: A case study. Geomorphology, 201, 363-379, https://doi.org/10.1016/j.geomorph.2013.07.011
    Publication Date: 2024-01-18
    Description: Thermokarst lakes and basins are major components of ice-rich permafrost landscapes in East Siberian coastal lowlands and are regarded as indicators of regional climatic changes. We investigate the temporal and spatial dynamics of a 7.5 km**2, partly drained thermokarst basin (alas) using field investigations, remote sensing, Geographic Information Systems (GIS), and sediment analyses. The evolution of the thermokarst basin proceeded in two phases. The first phase started at the Pleistocene/Holocene transition (13 to 12 ka BP) with the initiation of a primary thermokarst lake on the Ice Complex surface. The lake expanded and persisted throughout the early Holocene before it drained abruptly about 5.7 ka BP, thereby creating a 〉 20 m deep alas with residual lakes. The second phase (5.7 ka BP to present) is characterized by alternating stages of lower and higher thermokarst intensity within the alas that were mainly controlled by local hydrological and relief conditions and accompanied by permafrost aggradation and degradation. It included diverse concurrent processes like lake expansion and stepwise drainage, polygonal ice-wedge growth, and the formation of drainage channels and a pingo, which occurred in different parts of the alas. This more dynamic thermokarst evolution resulted in a complex modern thermokarst landscape. However, on the regional scale, the changes during the second evolutionary phase after drainage of the initial thermokarst lakes were less intense than the early Holocene extensive thermokarst development in East Siberian coastal lowlands as a result of a significant regional change to warmer and wetter climate conditions.
    Keywords: AWI_PerDyn; Permafrost Research (Periglacial Dynamics) @ AWI
    Type: Dataset
    Format: application/zip, 2 datasets
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-18
    Keywords: Age, 14C AMS; Age, 14C calibrated; Age, comment; Age, dated; Age, dated material; Age, dated standard deviation; Arctic Tundra; AWI_PerDyn; AWI Arctic Land Expedition; Calendar age, maximum/old; Calendar age, minimum/young; DEPTH, sediment/rock; Event label; GCUWI; Gravity corer, UWITEC; island; Laboratory code/label; Latitude of event; Lena2008; Lena2008_LC1; Lena2008_LC2; Lena2008_LC3; Lena2008_OC-A; Lena2008_OC-B; Lena2009; Lena2009_K2; Longitude of event; Number; OC-A; OC-B; OUTCROP; Outcrop sample; Permafrost Research (Periglacial Dynamics) @ AWI; radiocarbon; RU-Land_2008_Lena; RU-Land_2009_Lena; Samoylov Island, Lena Delta, Siberia; Sample ID
    Type: Dataset
    Format: text/tab-separated-values, 189 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-18
    Keywords: Angle; Arctic Tundra; Area; AWI_PerDyn; Bathymetry; Big Alas Lake; Depth, bathymetric, maximum; Depth, reference; Elongation ratio; Event label; File name; File size; KU_Lake_1; KU_Lake_2; KU_Lake_3; Lake/Pond; Level; Monitoring station; MONS; Perimeter; Permafrost Research (Periglacial Dynamics) @ AWI; Samoylov Island, Lena Delta, Siberia; Uniform resource locator/link to file
    Type: Dataset
    Format: text/tab-separated-values, 30 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-20
    Description: This data set provides a detailed inventory of lakes in the Lena Delta, northern Siberia, with respect to the lakes' association with one of the three geomorphological main terraces of the Lena Delta. The inventory is based on Landsat-7 ETM+ image data and spatial analysis in a Geographical Information System (GIS). Several morphometric lake attributes were determined from the resulting dataset and statistically analyzed. Significant differences in the morphometric lake characteristics allowed the distinction of a mean lake type for each main terrace. The lake types reflect the special lithological and cryolithological conditions and geomorphological processes prevailing on each terrace. In Morgenstern et al. (2008), special focus was laid on the investigation of lake orientation and the discussion of possible mechanisms for the evolution of the second terrace's oriented lakes.
    Keywords: AWI Arctic Land Expedition; Comment; Event label; File size; LenaDelta_2nd_terrace; LenaDelta_3rd_terrace; LenaDelta_lakes; LenaDelta_lakes_divided; Lena Delta, Siberia, Russia; Remote Sensing of POlar Non-glaciated and Sensitive Environments; RESPONSE; Uniform resource locator/link to file; Uniform resource locator/link to image
    Type: Dataset
    Format: text/tab-separated-values, 16 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-07-11
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...