ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2012-06-21
    Description: Molecular dynamics (MD) simulations were used to monitor the stability and conformation of double-stranded and single-stranded amyloses and single-stranded cellulose oligomers containing 9 sugar moieties in solution as a function of solvent composition, ionic strength, temperature, and methylation state. This study along with other previous studies suggests that hydrogen bonds are crucial for guaranteeing the stability of the amylose double helix. Single-stranded amylose forms a helical structure as well, and cellulose stays highly elongated throughout the simulation time, a behavior that was also observed experimentally. In terms of coordination of solute hydroxyl groups with ions, amylose shows entropy-driven coordination of calcium and sulfate ions, whereas cellulose-ion coordination seems to be enthalpy-dominated. This indicates that entropy considerations cannot be neglected when explaining the structural differences between amyloses and celluloses.
    Print ISSN: 1687-9341
    Electronic ISSN: 1687-935X
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-01-22
    Description: Molecular dynamics (MD) simulations were used to monitor the stability and conformation of double-stranded and single-stranded amyloses and single-stranded cellulose oligomers containing 9 sugar moieties in solution as a function of solvent composition, ionic strength, temperature, and methylation state. This study along with other previous studies suggests that hydrogen bonds are crucial for guaranteeing the stability of the amylose double helix. Single-stranded amylose forms a helical structure as well, and cellulose stays highly elongated throughout the simulation time, a behavior that was also observed experimentally. In terms of coordination of solute hydroxyl groups with ions, amylose shows entropy-driven coordination of calcium and sulfate ions, whereas cellulose-ion coordination seems to be enthalpy-dominated. This indicates that entropy considerations cannot be neglected when explaining the structural differences between amyloses and celluloses.
    Print ISSN: 1687-9341
    Electronic ISSN: 1687-935X
    Topics: Chemistry and Pharmacology
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...