ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-03-26
    Description: Exceptional genomic stability is one of the hallmarks of mouse embryonic stem (ES) cells. However, the genes contributing to this stability remain obscure. We previously identified Zscan4 as a specific marker for two-cell embryo and ES cells. Here we show that Zscan4 is involved in telomere maintenance and long-term genomic stability in ES cells. Only 5% of ES cells express Zscan4 at a given time, but nearly all ES cells activate Zscan4 at least once during nine passages. The transient Zscan4-positive state is associated with rapid telomere extension by telomere recombination and upregulation of meiosis-specific homologous recombination genes, which encode proteins that are colocalized with ZSCAN4 on telomeres. Furthermore, Zscan4 knockdown shortens telomeres, increases karyotype abnormalities and spontaneous sister chromatid exchange, and slows down cell proliferation until reaching crisis by passage eight. Together, our data show a unique mode of genome maintenance in ES cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851843/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851843/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zalzman, Michal -- Falco, Geppino -- Sharova, Lioudmila V -- Nishiyama, Akira -- Thomas, Marshall -- Lee, Sung-Lim -- Stagg, Carole A -- Hoang, Hien G -- Yang, Hsih-Te -- Indig, Fred E -- Wersto, Robert P -- Ko, Minoru S H -- ZIA AG000655-11/Intramural NIH HHS/ -- ZIA AG000656-11/Intramural NIH HHS/ -- ZIA AG000700-02/Intramural NIH HHS/ -- ZIA AG000706-02/Intramural NIH HHS/ -- England -- Nature. 2010 Apr 8;464(7290):858-63. doi: 10.1038/nature08882. Epub 2010 Mar 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Developmental Genomics and Aging Section, Laboratory of Genetics, NIH, Baltimore, Maryland 21224, USA〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20336070" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Proliferation ; Chromosome Aberrations ; Embryonic Stem Cells/cytology/*metabolism/pathology ; Gene Expression Regulation ; Gene Knockdown Techniques ; *Genomic Instability ; Karyotyping ; Meiosis/genetics/physiology ; Mice ; Protein Transport ; Recombination, Genetic/genetics ; Sister Chromatid Exchange/genetics ; Telomere/*genetics/*metabolism ; Transcription Factors/deficiency/genetics/*metabolism ; Up-Regulation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-26
    Description: B-type lamins, the major components of the nuclear lamina, are believed to be essential for cell proliferation and survival. We found that mouse embryonic stem cells (ESCs) do not need any lamins for self-renewal and pluripotency. Although genome-wide lamin-B binding profiles correlate with reduced gene expression, such binding is not directly required for gene silencing in ESCs or trophectoderm cells. However, B-type lamins are required for proper organogenesis. Defects in spindle orientation in neural progenitor cells and migration of neurons probably cause brain disorganizations found in lamin-B null mice. Thus, our studies not only disprove several prevailing views of lamin-Bs but also establish a foundation for redefining the function of the nuclear lamina in the context of tissue building and homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306219/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3306219/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kim, Youngjo -- Sharov, Alexei A -- McDole, Katie -- Cheng, Melody -- Hao, Haiping -- Fan, Chen-Ming -- Gaiano, Nicholas -- Ko, Minoru S H -- Zheng, Yixian -- R01 AR060042/AR/NIAMS NIH HHS/ -- R01 AR060042-02/AR/NIAMS NIH HHS/ -- R01 GM 56312/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2011 Dec 23;334(6063):1706-10. doi: 10.1126/science.1211222. Epub 2011 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22116031" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Body Size ; Brain/cytology/embryology ; Cell Cycle ; Cell Differentiation ; Cell Movement ; Cells, Cultured ; Chromatin/metabolism ; Embryonic Development ; Embryonic Stem Cells/cytology/*physiology ; Female ; Gene Expression Regulation, Developmental ; Gene Silencing ; Lamin Type B/genetics/metabolism/*physiology ; Male ; Mice ; Mice, Knockout ; Neural Stem Cells/cytology ; Neurons/cytology ; Nuclear Lamina/physiology ; Organ Size ; *Organogenesis ; Pluripotent Stem Cells/cytology/physiology ; Promoter Regions, Genetic ; Spindle Apparatus/physiology/ultrastructure ; Transcription, Genetic ; Trophoblasts/cytology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2011-04-25
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-14
    Description: The mutational activation of oncogenes drives cancer development and progression. Classic oncogenes, such as MYC and RAS, are active across many different cancer types. In contrast, “lineage-survival” oncogenes represent a distinct and emerging class typically comprising transcriptional regulators of a specific cell lineage that, when deregulated, support the proliferation and...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-01-25
    Description: Body temperature is maintained in a narrow range in mammals, primarily controlled by sweating. In humans, the dynamic thermoregulatory organ, comprised of 2–4 million sweat glands distributed over the body, can secrete up to 4 L of sweat per day, thereby making it possible to withstand high temperatures and endure prolonged physical stress (e.g., long-distance running). The genetic basis for sweat gland function, however, is largely unknown. We find that the forkhead transcription factor, FoxA1, is required to generate mouse sweating capacity. Despite continued sweat gland morphogenesis, ablation of FoxA1 in mice results in absolute anihidrosis (lack of sweating). This inability to sweat is accompanied by down-regulation of the Na-K-Cl cotransporter 1 (Nkcc1) and the Ca2+-activated anion channel Bestrophin 2 (Best2), as well as glycoprotein accumulation in gland lumens and ducts. Furthermore, Best2-deficient mice display comparable anhidrosis and glycoprotein accumulation. These findings link earlier observations that both sodium/potassium/chloride exchange and Ca2+ are required for sweat production. FoxA1 is inferred to regulate two corresponding features of sweat secretion. One feature, via Best2, catalyzes a bicarbonate gradient that could help to drive calcium-associated ionic transport; the other, requiring Nkcc1, facilitates monovalent ion exchange into sweat. These mechanistic components can be pharmaceutical targets to defend against hyperthermia and alleviate defective thermoregulation in the elderly, and may provide a model relevant to more complex secretory processes.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-12-20
    Description: Biogenesis and molecular function are two key subjects in the field of microRNA (miRNA) research. Deep sequencing has become the principal technique in cataloging of miRNA repertoire and generating expression profiles in an unbiased manner. Here, we describe the miRGator v3.0 update ( http://mirgator.kobic.re.kr ) that compiled the deep sequencing miRNA data available in public and implemented several novel tools to facilitate exploration of massive data. The miR-seq browser supports users to examine short read alignment with the secondary structure and read count information available in concurrent windows. Features such as sequence editing, sorting, ordering, import and export of user data would be of great utility for studying iso-miRs, miRNA editing and modifications. miRNA–target relation is essential for understanding miRNA function. Coexpression analysis of miRNA and target mRNAs, based on miRNA-seq and RNA-seq data from the same sample, is visualized in the heat-map and network views where users can investigate the inverse correlation of gene expression and target relations, compiled from various databases of predicted and validated targets. By keeping datasets and analytic tools up-to-date, miRGator should continue to serve as an integrated resource for biogenesis and functional investigation of miRNAs.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...