ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Computer Programming and Software; Space Sciences (General)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: This software provides a development framework that allows planning activities for the Mars Science Laboratory rover to be altered at any time, based on changes of the Activity Dictionary. The Activity Dictionary contains the definition of all activities that can be carried out by a particular asset (robotic or human). These definitions (and combinations of these definitions) are used by mission planners to give a daily plan of what a mission should do. During the development and course of the mission, the Activity Dictionary and actions that are going to be carried out will often be changed. Previously, such changes would require a change to the software and redeployment. Now, the Activity Dictionary authors are able to customize activity definitions, parameters, and resource usage without requiring redeployment. This software provides developers and end users the ability to modify the behavior of automatically generated activities using a script. This allows changes to the software behavior without incurring the burden of redeployment. This software is currently being used for the Mars Science Laboratory, and is in the process of being integrated into the LADEE (Lunar Atmosphere and Dust Environment Explorer) mission, as well as the International Space Station.
    Keywords: Man/System Technology and Life Support
    Type: NPO-48308 , NASA Tech Briefs, Februrary 2013; 22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: In the domain of telerobotic operations, the primary challenge facing the operator is to understand the state of the robotic platform. One key aspect of understanding the state is to visualize the physical location and configuration of the platform. As there is a wide variety of mobile robots, the requirements for visualizing their configurations vary diversely across different platforms. There can also be diversity in the mechanical mobility, such as wheeled, tracked, or legged mobility over surfaces. Adaptable 3D articulated robot visualization software can accommodate a wide variety of robotic platforms and environments. The visualization has been used for surface, aerial, space, and water robotic vehicle visualization during field testing. It has been used to enable operations of wheeled and legged surface vehicles, and can be readily adapted to facilitate other mechanical mobility solutions. The 3D visualization can render an articulated 3D model of a robotic platform for any environment. Given the model, the software receives real-time telemetry from the avionics system onboard the vehicle and animates the robot visualization to reflect the telemetered physical state. This is used to track the position and attitude in real time to monitor the progress of the vehicle as it traverses its environment. It is also used to monitor the state of any or all articulated elements of the vehicle, such as arms, legs, or control surfaces. The visualization can also render other sorts of telemetered states visually, such as stress or strains that are measured by the avionics. Such data can be used to color or annotate the virtual vehicle to indicate nominal or off-nominal states during operation. The visualization is also able to render the simulated environment where the vehicle is operating. For surface and aerial vehicles, it can render the terrain under the vehicle as the avionics sends it location information (GPS, odometry, or star tracking), and locate the vehicle over or on the terrain correctly. For long traverses over terrain, the visualization can stream in terrain piecewise in order to maintain the current area of interest for the operator without incurring unreasonable resource constraints on the computing platform. The visualization software is designed to run on laptops that can operate in field-testing environments without Internet access, which is a frequently encountered situation when testing in remote locations that simulate planetary environments such as Mars and other planetary bodies.
    Keywords: Man/System Technology and Life Support
    Type: NPO-47945 , NASA Tech Briefs, December 2011; 11-12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: A system was developed to provide a new mechanism for members of the mission community to create and contribute new science data to the rest of the community. Mission tools have allowed members of the mission community to share first order data (data that is created by the mission s process in command and control of the spacecraft or the data that is captured by the craft itself, like images, science results, etc.). However, second and higher order data (data that is created after the fact by scientists and other members of the mission) was previously not widely disseminated, nor did it make its way into the mission planning process.
    Keywords: Social and Information Sciences (General)
    Type: NPO-48217 , NASA Tech Briefs, January 2013; 21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...