ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (6)
Collection
Years
Year
  • 1
    Publication Date: 2014-12-06
    Description: Infants with MLL rearranged (MLLr) acute lymphoblastic leukemia (ALL) have a poor prognosis, with an event free survival of only 23-44%. Whole genome sequencing (WGS) of this subtype has revealed a paucity of cooperating mutations, with an average of 2.2 somatic single nucleotide variations and/or insertions/deletions per case. Despite recent progress in defining the epigenetic alterations that result from the expression of the MLL fusion protein, these insights have only recently begun to be extrapolated into the development of new therapeutic approaches whose benefits have yet to be defined. Thus, there remains an urgent need for the development of alternative approaches to improve outcomes in these patients. To identify compounds that are active in MLLr disease, we established in vitro and in vivo assays to evaluate drug sensitivity of primary infant ALL patient samples. 15 infant MLLr leukemia samples that have previously undergone WGS were xenografted into NOD/SCID/IL2Rγnull (NSG) mice. All samples engrafted and expanded in NSG mice, leading to overt leukemia with a latency of 49 to 276 days. Purification of leukemic blasts from a single moribund mouse yielded on average 108 cells, providing sufficient material to screen large numbers of compounds. In vitro conditions were defined that support growth in 40% of the patient specimens, allowing for a more accurate determination of drug sensitivity. Growth in vitro was associated with early onset of disease in NSG xenografts and younger age at presentation, allowing us to evaluate patient samples that represent aggressive high risk disease. Using this system, we tested bortezomib in addition to 28 other drugs, including standard ALL therapeutic agents as well as targeted kinase inhibitors and inhibitors of epigenetic marks. Three classes of agents were active in this system: anthracyclines, histone deacetylase inhibitors (HDACi), and the proteasome inhibitor bortezomib. In contrast to anthracyclines and HDACi, where IC50 values were on par with those reported in the literature for primary childhood ALL samples, MLLr infant samples required 10-100 fold less bortezomib to induce toxicity. Bortezomib has been shown to mediate responses through several mechanisms, including NFKB inhibition, stabilization of cell cycle regulatory proteins, and induction of apoptosis. Recently, proteasome inhibition has been demonstrated to lead to accumulated MLL fusion protein levels, triggering apoptosis and cell cycle arrest in MLLr cell lines. To determine if NFKB inhibition also plays a role, we evaluated cellular concentrations of the activated NFKB transcription factor, but failed to see decreased levels when MLLr cells were treated with bortezomib. Bortezomib has also been shown to deregulate ubiquitin stores and deplete histone H2B ubiquitination (H2Bub), an epigenetic mark that is linked to histone methylation and expression. Recently, several groups have demonstrated that H2Bub is required for DOT1L activity and HOX gene expression. We therefore evaluated H2Bub levels in bortezomib-treated patient samples and confirmed depletion of this epigenetic mark. Furthermore, patient samples treated with bortezomib downregulated both the MLL gene expression signature and signatures of downstream targets, such as cMYC, demonstrating that the MLL transcriptional program is inhibited in the presence of bortezomib. ChIP-seq is underway to map H2Bub and H3K79 methylation changes genome wide in response to treatment with bortezomib. The HDACi vorinostat and bortezomib have both been evaluated in Phase I and II pediatric leukemia clinical trials. Based on the safety and efficacy from these earlier studies, we treated 6 relapsed/refractory MLLr leukemia patients with a chemotherapy regimen that included mitoxantrone, vorinostat, and bortezomib. 4 patients had a complete response (CR), 1 patient had a partial response (PR) and 1 patient had stable disease for an overall response rate of 5/6 (83%). Clinical trials are in development to assess this combination further for both relapsed MLLr disease as well as newly diagnosed infant ALL. Our data suggests that these three classes of drugs, identified in our laboratory assays, are clinically active thus validating our system. We are now using this platform to proceed with a high throughput drug screen to identify additional compounds for future clinical development. Disclosures Off Label Use: Vorinostat and Bortezomib for the treatment of pediatric leukemia.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-06
    Description: Systemic histiocytic disorders, including Langerhans cell histiocytosis (LCH) and the non-Langerhans cell histiocytic disorder Erdheim-Chester Disease (ECD) are clinically heterogeneous diseases whose underlying etiology has long been obscure. Recent identification of BRAF V600E mutations in ~50% of LCH and ECD patients, as well as mutations in MAP2K1 in ~25% of BRAF-wild type LCH patients has refined our understanding of these disorders as clonal malignancies driven by constitutive MAP kinase signaling. However, the compendium of mutations co-occurring with BRAF V600E and MAP2K1 mutations in ECD/LCH have yet to be defined since unbiased genomic sequencing studies have not been performed in ECD. Moreover, the molecular bases of the phenotypic differences between LCH and ECD have remained elusive. Therefore, we performed whole exome sequencing (WES) of adult and pediatric LCH and ECD patients to further elucidate our understanding of the molecular bases of these disorders. Nineteen histiocytic disorder cases including fresh-frozen tissue biopsies from 10 adult (2 LCH and 8 ECD) and 8 pediatric patients (all LCH), along with paired normal tissue from blood were evaluated by WES (1 adult ECD patient had synchronous biopsies from 2 different anatomic sites- these 2 samples are treated independently in this analysis). Percentage of tumor involvement ranged from 25%-50% based on review of histologic sections by board-certified hematopathologists. High quality sequence variants unique to the tumor DNA including SNVs and indels were identified for subsequent analyses. All candidate missense genetic variants were evaluated by 3 in silico analysis methods (PROVEAN; SIFT; PolyPhen-2) for predicted mutational effects on protein function. For missense variants, only those determined to be damaging to protein function in 2 or more in silico methods were retained for further evaluation. Mutations passing these analytical steps were further evaluated for biological significance using several web-based, freely available pathway analysis databases. We first examined mutations in the MAP kinase pathways identified by the WES of LCH and ECD patients (Figure). Of LCH cases, 40% harbored BRAF V600E mutations while 30% had mutations in MAP2K1. Three patients carried in-frame deletion mutations in the negative regulatory domain of MAP2K1. Interestingly, mutations in the JNK and p38 MAP kinase pathways were identified in 20% of LCH patients, one of which was BRAF/MAP2K1 wild type (Figure). Of the ECD patients, 44% were BRAF V600E mutant, and we identified one BRAF V600E-wild type ECD patient as having a MAP2K1 mutation (MAP2K1 K57N) and another as having an NRAS (NRAS Q61R) mutation. As with LCH patients, WES analysis again noted mutations in p38 and JNK MAP kinase pathway members in BRAF/NRAS/MAP2K1-wild type ECD patients further highlighting involvement of all 3 MAP kinase pathways in ECD/LCH pathogenesis. We next evaluated mutated genes not known to be directly involved in MAP kinase signaling in order to understand how non-MAP kinase signaling pathways might contribute to LCH/ECD pathogenesis. Recurrent mutations in members of the Notch, WNT/β-catenin, NF-κB, and FGF signaling pathways were identified (Figure). Interestingly, loss-of-function mutations in Notch pathway mediators identified in this study occurred only (i) in MAML3 and MAMLD1 and (ii) in LCH (60% of patients) but not ECD. These findings, combined with recent identification of the monocytic-origin of LCH and the discovery that loss of Notch signaling results in monocytic clonal disorders, highlights a potential role for Notch signaling in the pathogenesis of LCH. Likewise, identification of a DNMT3A mutation in a BRAF V600E-mutant ECD patient and the association of Dnmt3a loss with clonal dominance of Dnmt3a-deficient hematopoietic cells suggests a potential role for disordered epigenetic regulation in ECD. This WES study of somatic mutations in LCH and ECD confirms previously reported frequencies of BRAF V600E and MAP2K1 mutations in LCH, identifies MAP2K1 mutations in ECD for the first time, and reveals additional candidate mutations in MAPK signaling that are mutually exclusive of BRAF/MAP2K1 mutations. Furthermore, this first WES study of ECD reveals somatic mutations in multiple genes that regulate diverse cellular processes co-occurring with recurrent mutations in MAPK signaling pathways. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-06
    Description: Pathologic germ line mutations that predispose patients to cancer are estimated to occur in 4-30% of all pediatric oncology cases. In addition to leukemia specific familial predisposition syndromes, children with rare constitutional syndromes, heterogeneous dysmorphic syndromes, and multiple-cancer hereditary predisposition syndromes are all at an increased risk for hematologic malignancies. However, to date no genome-wide analysis has been done to define the range of germ line mutations that occur in pediatric patients with hematological malignancies. To determine the frequency of pediatric cancer patients that have germ line variants of pathological significance in genes that predisposed to cancer, we analyzed the germ line and tumor DNA from 1120 pediatric cancer patients that were enrolled in the St. Jude – Washington University Pediatric Cancer Genome Project (PCGP). Samples were analyzed by whole-genome sequencing (n = 595), whole-exome sequencing (n = 456), or both (n = 69). Single nucleotide variants (SNVs), insertions/deletions (indels), structural variations (SV) and copy number alterations (CNAs) were detected using our analytical pipeline and all single nucleotide polymorphisms (SNPs) previously identified in non-cancer populations were filtered out. Our analysis then focused on the 23 cancer predisposition genes recently recommended for germ line analysis by the American College of Genetics and Genomics, along with an additional 8 genes that have been previously shown to predispose to pediatric cancer at a high penetrance. All variants in these 31 genes were classified as pathologic, likely pathologic, uncertain significance, likely benign, and benign based on literature review and in-silico predictions on the effect of novel mutations. An expanded analysis including a total of 565 genes known to play a role in oncogenesis was also evaluated. Pathologic or likely pathologic germ line variants in one of the 31 genes were detected in 8% (90/1120) of patients, including: 16% (46/287) of patients with solid tumors, 8.6% (21/245) with brain tumors, and 3.9% (23/588) with leukemia. Expanding this analysis to 565 cancer gene resulted in only a slight increase, with a pathologic or likely pathologic variant being detected in 8.6% (97/1120) of patients. The most frequently effected genes included TP53 (n=48), APC (n=7) and BRCA2(n=6). Importantly, in 〉50% of these patients, analysis of their tumor DNA revealed the absence of a wild type allele for the cancer predisposition gene that was altered in the germ line. The 588 pediatric patients with leukemia included 116 acute myeloid leukemias (AMLs: FAB M7 n=20; Core Binding Factor leukemias n=86; MLL-R n=10) and 472 acute lymphoblastic leukemias (ALLs: E2A-PBX1 n=53; ERG-R n=39; TEL-AML1 n=53; Hyperdiploid n=69; Hypodiploid n=47; BCR-ABL1 n=40; T-ALL n=32; MLL-R n=40; BCR-ABL-like n=31; and Other n=68). Across this cohort, 3.9% (23/588) of leukemia patients harbored a pathologic germ line mutations in one of the 31 cancer pre-disposing genes. This number increased to 4.6% (27/588; 28 mutations) when the expanded gene list was evaluated. TP53 (n=10) was the most frequently altered germ line gene in pediatric leukemia patients and was found predominantly in low-hypodiploid ALL, as previously reported. Germ line pathologic variants were also identified in KRAS, RUNX1, APC, BRCA2, and RET (2 cases each), and NRAS, SH2B3, BRCA1, MUTYH, PTCH1, SDHA,VHL, and NF2 (1 case each). Although germ line mutations in RUNX1 and SH2B3are typically associated with myeloid neoplasms, we identified these lesions in 3 cases of B lineage ALL suggesting an association with a wider spectrum of leukemia. In conclusion, a small but significant proportion of pediatric patients with leukemia carry a germ line variant of pathologic significance in a cancer predisposition gene. These results suggest that these germ line lesions likely play a direct role in the pathogenesis of the patient’s presenting leukemia. Moreover, our results suggest that these patients would benefit from future clinical surveillance for the development of a second cancer. Lastly, these data demonstrate the power of comprehensive next generation DNA/RNA sequencing for the identification of pediatric patients who carry a germ line pathologic variant in a cancer predisposition gene. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-06
    Description: Acute megakaryoblastic leukemia (AMKL) accounts for ~10% of childhood AML. AMKL patients without Down syndrome have a poor outcome with a 3 year survival of less than 40%. To gain insight into the biology of this disease, we previously performed transcriptome sequencing on diagnostic blasts from a discovery cohort of 14 pediatric cases and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult samples. This analysis identified novel fusion transcripts restricted to pediatric AMKL including CBFA2T3-GLIS2,GATA2-HOXA9, MN1-FLI1, and NIPBL-HOXB9. To confirm their role in oncogenesis and gain insight into the mechanism whereby these fusions promote disease, we introduced each of them into murine hematopoietic cells and assessed their effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a control retrovirus failed to form colonies after the second replating. By contrast, expression of each of the fusion genes resulted in a marked increase in self-renewal capacity, with colony formation persisting through 10 replatings. Immunophenotypic analysis revealed evidence of megakaryocytic differentiation in CBFA2T3-GLIS2 and MN1-FLI1 cohorts, whereas NIPBL-HOXB9 and GATA2-HOXA9 cells carried markers consistent with myeloid progenitors. Transplantation of fusion gene modified bone marrow cells into syngeneic recipients induced overt leukemia in all cohorts with the exception of CBFA2T3-GLIS2, suggesting an essential requirement for cooperative mutation(s) in cases expressing this chimeric gene. To assess self-renewal activity of the leukemia generated in our murine models, we conducted secondary transplants for all cohorts. In all cases, the leukemia was transplantable with a shorter latency than in the primary transplant setting. To characterize the tumors at the molecular level, 5 samples from each of the 3 fusions underwent array comparative genomic hybridization, transcriptome, and whole exome sequencing. Samples demonstrated a small number of cooperating mutations with 1.5 copy number alterations (range 0-6) and 6.4 single nucleotide variations (range 2-13) per case. Overall, cases carried an average of 7.9 mutations (range 2-14). Despite the low number of lesions, recurrently mutated genes were identified. These include activating mutations in Flt3, Kras, and cMet, as well as loss of function mutations in the tumor suppressors Phactr4, Wt1, and Tet2. A comparison between fusion subtypes did not reveal any statistically significant differences, although there was a trend towards a greater number of mutations in the GATA2-HOXA9 cohort. Transcriptome sequencing of cohorts, along with normal hematopoietic progenitor subsets, confirmed unique gene expression patterns between each of the fusions. Consistent with immunophenotyping, MN1-FLI1 demonstrated enrichment of the MEP signature while NIPBL-HOXB9 and GATA2-HOXA9 were enriched for CMP and monocyte precursor signatures respectively. ChIP-seq analysis of each of the fusions is underway to definitively identify the genomic targets whose expression is directly altered by their binding. A common characteristic between all fusions is the presence of protein interaction domains contributed by the N term partner, and DNA binding domains contributed by the C term partner. To determine if these fusions have a novel gain of function distinct from their independent counterparts, we introduced each partner gene into murine bone marrow cells for transplantation experiments. As previously described, introduction of MN1 into hematopoietic cells led to a highly penetrant leukemia. In contrast, HOXA9, HOXB9, and FLI1 all had 〉75% disease free survival with few myeloid leukemias resulting from their over expression, while GATA2 failed to induce any disease at all. NIPBL’s size precluded transplant assays. Therefore, to evaluate its contribution we introduced a point mutation previously shown to disrupt binding of NIPBL to the cohesion component MAU2. This alteration abrogated the ability of the fusion to induce leukemia in our transplant model, demonstrating the importance of this interaction in the pathogenesis of disease. In conclusion, our data confirms a pathogenic role for GATA2-HOXA9, MN1-FLI1, and NIPBL-HOXB9 in AMKL. Further studies delineating the cooperating mutations required for CBFA2T3-GLIS2 are indicated. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-18
    Description: Abstract 757 Acute Megakaryoblastic Leukemia (AMKL) accounts for ∼10% of childhood acute myeloid leukemia (AML). Although AMKL patients with down syndrome (DS-AMKL) have an excellent 5 year event-free survival (EFS), non-DS-AMKL patients have an extremely poor outcome with a 3 year EFS of less than 40%. With the exception of the t(1;22) translocation seen in infant non-DS-AMKL, little is known about the molecular genetic lesions that underlie this leukemia subtype. To define the landscape of mutations that occur in non-DS-AMKL, we performed transcriptome sequencing on diagnostic blasts from 14 cases (discovery cohort) using the illumina platform. Our results identified chromosomal rearrangements resulting in the expression of novel fusion transcripts in 12/14 cases. Remarkably, in 7/14 cases we detected an inversion on chromosome 16 [inv(16)(p13.3;q24.3)] that resulted in the juxtaposition of the CBFA2T3, a member of the ETO family of transcription factors, next to GLIS2 resulting in a CBFA2T3-GLIS2 chimeric gene encoding an in frame fusion protein. 6 cases in the discovery cohort fused exon 10 of CBFA2T3 to exon 3 of GLIS2, while 1 case carried a larger product that fused exon 11 of CBFA2T3 to exon 1 of GLIS2. Both products retain the 3 CBFA2T3 N-terminal nervy homology regions that mediate protein interactions, and the 5 GLIS2 C-terminal zinc finger domains that bind the Glis DNA consensus sequence, along with one of its N-terminal transcriptional regulatory domains. GLIS2 is a member of the GLI super family of transcription factors and has been demonstrated to play a role in regulating expression of GLI target genes as well as inhibiting WNT signaling through the binding of beta catenin. Although GLIS2 is not normally expressed in hematopoietic cells, the translocation results in high level expression of the CBFA2T3-GLIS2 fusion protein. In addition to CBFA2T3-GLIS2, chimeric transcripts were detected in 6/7 cases that lacked evidence of the inv(16)(p13.3;q24.3). Specifically, we detected GATA2-HOXA9, MN1-FLI1, NIPBL-HOXB9, NUP98-KDM5A, GRB10-SDK1 and C8orf76-HOXA11AS, each in an individual case. Importantly, several of the genes involved in these translocations either play a direct role in normal megakaryocytic differentiation (GATA2 and FLI1), or have been previously shown to be involved in leukemogenesis (HOXA9, MN1, HOXB9). Evaluation of a recurrency cohort of 42 samples including 14 additional pediatric cases and 28 adult cases by RT-PCR revealed 4 additional pediatric samples carrying CBFA2T3-GLIS2 for an overall frequency of 39% in pediatric AMKL. In addition to these somatic structural variations, we also identified mutations in genes previously shown to play a role in megakaryoblastic leukemia including activating mutations in JAK2 and MPL (36%). To gain insight into the mechanism whereby CBFA2T3-GLIS2 promotes leukemogenesis, we introduced the fusion into murine hematopoietic cells and assessed its effect on in vitro colony replating as a surrogate measure of self-renewal. Hematopoietic cells transduced with a mCherry expressing retroviral vector failed to form colonies after the second replating. By contrast, expression of either wild-type GLIS2 or the CBFA2T3-GLIS2 fusion resulted in a marked increase in the self-renewal capacity, with colony formation persisting through eight replatings. Immunophenotypic analysis of the CBFA2T3-GLIS2 expressing colonies revealed evidence of megakaryocytic differentiation. Importantly, the CBFA2T3-GLIS2 cells remained growth factor dependent suggesting that cooperating mutations in growth factor signaling pathways are required for full leukemic transformation. Taken together these data identify a novel cryptic inv(16)-encoded CBFA2T3-GLIS2 fusion protein as a recurrent driver mutation in approximately 40% of non-infant pediatric non-DS-AMKLs. Moreover, the majority of pediatric cases that lacked this lesion were shown by transcriptome sequence analysis to contain other chromosomal rearrangements that encoded fusion proteins that directly alter megakaryocytic differentiation and/or myeloid cell growth. The alteration of a key transcriptional regulator within the hedgehog signaling pathways in a substantial percentage of pediatric AMKL raises the possibility that inhibition of this pathway may have a therapeutic benefit in this aggressive form of AML. *TAG and ALG contributed equally to this work. Disclosures: Biondi: BMS, Novartis, Micromed: Consultancy, Membership on an entity's Board of Directors or advisory committees. Ravandi:Bristol Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Novartis: Honoraria. Kantarjian:Novartis: Consultancy, Research Funding; Pfizer: Research Funding; BMS: Research Funding. Doehner:Hoffmann La Roche: Honoraria.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-18
    Description: Abstract 69 Infant (〈 1 year of age) acute lymphoblastic leukemia (ALL) is a rare disease characterized by rearrangements of the Mixed Lineage Leukemia (MLL) gene at 11q23 and a poor prognosis. In an effort to determine the total complement of somatic mutations occurring in this high risk leukemia, we performed paired-end whole genome sequencing (WGS) on diagnostic leukemia blasts and matched germ line samples from 22 infants with MLL rearranged ALL using the Illumina platform. In addition, we sequenced 2 paired relapse samples. Somatic alterations, including single nucleotide variations (SNV), and structural variations (SV) including insertions, deletions, inversion, and inter- and intra-chromosomal rearrangements were detected using complementary analysis pipelines including Bambino, CREST and CONSERTING. Validation of identified somatic mutations was performed using PCR amplification of the leukemia and germ line DNA followed by Sanger or 454-based sequencing, or by array-based capture followed by Illumina-based sequencing. Analysis of the structure of MLL rearrangements at the base pair level revealed that over half had complex rearrangements that involved either three or more chromosomes, or contained at the breakpoints deletions, amplifications, insertions, or inversion of sequences. In five of the complex cases, chromosomal rearrangements were predicted to generate not only a MLL-partner gene fusion, but also novel in-frame fusions including KRAS-MLL; RAD51B-MLL / AFF1-RAD51B; MLLT10-CTNNAP3B; MLLT10-ATP5L / ATP5L-YPEL4; and CRTAM-GNL3. An analysis of the sequence surrounding the breakpoints of MLL and its partner genes suggest that the predominant mechanism of rearrangement involved non-homologous end joining. An analysis of the total number of non-silent mutations revealed infant ALL to have the lowest frequency of non-silent somatic mutations of any cancer sequenced to date. After removal of SVs and CNAs associated with the MLL rearrangements, a mean of only 2 somatic SVs and 2 SNVs affecting the coding region of annotated genes or regulatory RNAs were detected per case, with a range of non-silent mutation of between 0 and 11 per case (0–7 SV and 0–5 SNV). Despite the paucity of mutations several pathways were recurrently targeted. Mutations leading to activation of signaling through the PI3K/RAS pathway was observed in 45% of the cases with mutation of individual components including KRAS (n=4), NRAS (n=2), and non-recurrent mutations in NF1, PTPN11, PIK3R1, and the GTPase activating protein ARHGAP32 (p200Rho/GAP), which mediates cross-talk between RAS and Rho signaling. Other pathways altered include B cell differentiation, with 23% of cases containing mono-allelic deletion or gains of PAX5, 14% with deletions of the CDKN2A/B, and 2 cases with focal deletions of the non-coding RNA genes DLEU1/2. WGS of two infant ALL relapse samples and comparison with the data from their matched diagnostic samples revealed a marked increase in the number of mutations at relapse with additional SVs, SNVs, and CNAs identified. Moreover, an analysis of the allelic ratios of mutated genes revealed clonal heterogeneity at diagnosis with relapse appearing to arise from a minor diagnostic clone. Because of the exceedingly low frequency of mutations detected in infant ALL, we decided to define the frequency of non-silent SNVs in MLL rearranged leukemia occurring in older children (7–19 years of age). Exome sequencing was performed on 13 MLL leukemias (8 ALLs and 5 AMLs). This analysis revealed that non-infant pediatric MLL rearranged leukemias harbor a significantly higher number of non-silent somatic SNVs than infant ALL (mean 8/case in older patients versus 2/case in infants, p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...