ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (4)
Collection
Years
Year
  • 1
    Publication Date: 2013-08-02
    Description: The West Tahoe–Dollar Point fault (WTDPF) extends along the western margin of the Lake Tahoe Basin (northern Sierra Nevada, western United States) and is characterized as its most hazardous fault. Fallen Leaf Lake, Cascade Lake, and Emerald Bay are three subbasins of the Lake Tahoe Basin, located south of Lake Tahoe, and provide an opportunity to image primary earthquake deformation along the WTDPF and associated landslide deposits. Here we present results from high-resolution seismic Chirp (compressed high intensity radar pulse) surveys in Fallen Leaf Lake and Cascade Lake, multibeam bathymetry coverage of Fallen Leaf Lake, onshore Lidar (light detection and ranging) data for the southern Lake Tahoe Basin, and radiocarbon dates from piston cores in Fallen Leaf Lake and Emerald Bay. Slide deposits imaged beneath Fallen Leaf Lake appear to be synchronous with slides in Lake Tahoe, Emerald Bay, and Cascade Lake. The temporal correlation of slides between multiple basins suggests triggering by earthquakes on the WTDPF system. If this correlation is correct, we postulate a recurrence interval of ~3–4 k.y. for large earthquakes on the Fallen Leaf Lake segment of the WTDPF, and the time since the most recent event (~4.5 k.y. ago) exceeds this recurrence time. In addition, Chirp data beneath Cascade Lake image strands of the WTDPF offsetting the lake floor as much as ~7.5 m. The Cascade Lake data combined with onshore Lidar allow us to map the WTDPF continuously between Fallen Leaf Lake and Cascade Lake. This improved mapping of the WTDPF reveals the fault geometry and architecture south of Lake Tahoe and improves the geohazard assessment of the region.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-05-03
    Description: Gravity-flow deposits recovered in a suite of sediment cores in Lake Tahoe were examined to determine if the event deposits were triggered by strong shaking from earthquakes on active faults within and in close proximity to the Lake Tahoe Basin. The acoustic character and distribution of individual lacustrine deposits as well as potential source regions were constrained by high-resolution seismic Chirp reflection and multibeam bathymetric data. Between 14 and 17 Holocene event deposits have been identified in Lake Tahoe, and examination of their source areas suggests they originated from different initiation points along the steep margin, with some being synchronous around the basin, as opposed to flood-related deposits. Lithologic characteristics, magnetic susceptibility, carbon and nitrogen isotopic signatures, opal content, and 14 C dating indicate that these event deposits are reworked lacustrine material. Radiocarbon dates indicate that the emplacement of these event deposit sediments correlates well with the late Holocene paleoseismic earthquake record developed for the Tahoe Basin. When taken alone, the causality of these events may appear ambiguous, but when the evidence is examined comprehensively, it suggests that strong shaking may likely have been the primary trigger for many of the event deposits observed in the lake throughout the Holocene. For example, four event deposits are assigned to Tahoe Basin faults. The most recent earthquakes occurred on the Incline Village fault (between 630 and 120 cal. yr B.P.); the southern segment of the West Tahoe fault (between 4510 and 4070 cal. yr B.P.); on the central and northern segments of the West Tahoe fault (5600–5330 cal. yr B.P.); and on the West Tahoe fault (between 7890 and 7190 cal. yr B.P.). The oldest of the four associated Tahoe Basin events coincides with the beginning of an extended period when Lake Tahoe was likely not spilling or spilling intermittently, and this suggests that active faulting and footwall uplift cut off the outlet at this time, exaggerating drought conditions downstream. Likewise, the event between 5600 and 5330 cal. yr B.P. on the West Tahoe fault may have exaggerated a smaller drought reflected downstream in Pyramid Lake. This event may also be the most recent event (MRE) on the largest segment of the West Tahoe fault. If correct, the period since the last rupture is approximately twice the estimated average recurrence interval for the Rubicon segment of the West Tahoe fault. A more complete Holocene record of strong shaking greatly extends the paleoseismic record in the region and indicates a combined recurrence interval of between 750 and 800 yr for all faults in the region.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-01
    Description: A multichannel seismic (MCS) experiment spanning 600 km across the Alarcón Rise and its conjugate rifted margins in the southern Gulf of California (western North America) provides insight into the spatial and temporal evolution of extension between Baja California and the mainland (Mexico). Stratigraphic analysis of multiple rift basins within the Alarcón spreading corridor indicates an initial stage of oblique extension starting ca. 14–12 Ma. This initial phase of extension was characterized by the formation of several large basins in the center of the gulf and on the southeast margin with negligible synrift sedimentation. A second phase of oblique extension, likely synchronous with large-scale basin opening in the central and northern Gulf of California, began ca. 8–5 Ma and was characterized by the formation of smaller half-grabens distributed across the conjugate margins that contain both synrift and postrift deposits. A key feature imaged within the MCS data is a highly reflective, ropey layer at the top of basement, interpreted to be either volcanic rocks from the 25–12 Ma Comondú Group, and/or early rifting volcanic rocks that are between 11 and 9 Ma, or younger. This volcanic layer is extensively faulted, suggesting that it predates the episode of early extension. Upper crustal extension appears to be equally distributed across conjugate margins, forming a symmetrical continental rift. Two styles of rifted basin are observed; older basins (estimated as 14–11 Ma using sedimentation rates) show distributed extension with extensive basement faulting. In contrast, the younger basins (likely post–6 Ma) are asymmetrical with synrift deposits thickening into the basin-bounding faults. The northeast-southwest geomorphic expression of the Tamayo bank and trough and other features provides additional evidence that northwest-southeast oblique extension began ca. 12 Ma. These new spatial and temporal constraints, when combined with a crustal thickness profile obtained across the entire Alarcón corridor, suggest that significant northwest-southeast oblique extension within the Gulf of California started well before 6 Ma, in contrast to earlier models.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-11
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...