ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (2)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-19
    Description: In our day to day lives, the availability of light, with which to see our environment, is often taken for granted. The designers of land based lighting systems use sunlight and artificial light as their toolset. The availability of power, quantity of light sources, and variety of design options are often unlimited. The accessibility of most land based lighting systems makes it easy for the architect and engineer to verify and validate their design ideas. Failures with an implementation, while sometimes costly, can easily be addressed by renovation. Consider now, an architectural facility orbiting in space, 260 miles above the surface of the earth. This human rated architectural facility, the International Space Station (ISS) must maintain operations every day, including life support and appropriate human comforts without fail. The facility must also handle logistics of regular shipments of cargo, including new passengers. The ISS requires accommodations necessary for human control of machine systems. Additionally, the ISS is a research facility and supports investigations performed inside and outside its livable volume. Finally, the facility must support remote operations and observations by ground controllers. All of these architectural needs require a functional, safe, and even an aesthetic lighting environment. At Johnson Space Center, our Habitability and Human Factors team assists our diverse customers with their lighting environment challenges, via physical test and computer based analysis. Because of the complexity of ISS operational environment, our team has learned and developed processes that help ISS operate safely. Because of the dynamic exterior lighting environment, uses computational modeling to predict the lighting environment. The ISS' orbit exposes it to a sunrise every 90 minutes, causing work surfaces to quickly change from direct sunlight to earthshine to total darkness. Proper planning of vehicle approaches, robotics operations, and crewed Extra Vehicular Activities are mandatory to ensure safety to the crew and all others involved. Innovation in testing techniques is important as well. The advent of Solid State Lighting technology and the lack of stable national and international standards for its implementation pose new challenges on how to design, test and verify individual light fixtures and the environment that uses them. The ISS will soon be replacing its internal fluorescent lighting system to a solid state LED system. The Solid State Lighting Assembly will be used not only for general lighting, but also as a medical countermeasure to control the circadian rhythm of the crew. The new light source has performance criteria very specific to its spectral fingerprint, creating new challenges that were originally not as significant during the original design of the ISS. This presentation will showcase findings and toolsets our team is using to assist in the planning of tasks, and design of operational lighting environments on the International Space Station.
    Keywords: Man/System Technology and Life Support
    Type: JSC-CN-30697 , Southwest Regional Human Factors and Ergonomics Society Symposium; Jun 06, 2014; College Station, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: When contracts are let out to design multiple systems in a vehicle, it is a challenge to maintain integration between system leads. Designers on niche systems, like lighting and control panel design, often get caught up in the challenge of designing the light source or visual interface and fail to include time in their schedule to work with system architects on how their lighting system will be integrated. Additionally, behavioral scientists, industrial designers, and materials engineers get caught up with the materials and look of the system, but often fail to consider how the selection of their materials could affect the certification or performance of electronic devices like lighting systems. Additionally, computer modeling of the system architecture often assumes a perfect environment without the clutter of actual human use (dirt, stowage, crowding). As a result, lighting systems, and backlit displays run the risk of being overdesigned or under designed. Engineers making the assumption that because they have no input or there is no requirement on work surface reflectance, make the assumption that they can t count on good material choices and thus may install more lighting than is necessary. While having more lights may seem better, for a vehicle that is trying to conserve power, more lights may not be a good option. On the other hand, designers who made the opposite assumption and designed a lighting system that only produced just enough light, often wind up with a system that did conserve power, but didn t produce enough light. These situations are exasperated when the system starts to be used and the models are not perfect anymore. The lack of coordination and iterative design not only can impact lighting levels within an environment, but also can affect color perception. This is because, if materials do not represent a gradation of white or black, the material unevenly absorbs and reflects light at different wavelengths of the visual spectrum. The lighting designer may have built a light that meets light spectra requirements, but the eventual light reaching the human user may not be the spectra of light architects intended, if materials near the light source change the spectrum just by how much color is absorbed or reflected. With the recent findings concerning Circadian rhythm, where the spectra of light is extremely important for addressing crew sleep and wake cycles, system architects should pay considerable attention on the impact material choices have in changing the light spectrum in an environment. This presentation will show examples of how material choices impact the resulting illuminance, color spectrum, and power usage of an illuminated space. Its goal is to encourage system designers and planners to use more care in development of requirements and the verification of systems intended for the human visual interface.
    Keywords: Optics
    Type: JSC-CN-26411 , 2012 Houston Human Factors & Ergonomics; May 15, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...