ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-05-15
    Description: Impact cratering can destroy life from local to global scales and result in sudden turnovers of dominant genera and/or species. Here we report that it can also preserve components of the local biology present at the time of impact. We have investigated floral matter encapsulated within Cenozoic Era impact glasses produced by separate bolide impacts into the loessoid sediments of Argentina that occurred between 9.2 Ma (Miocene) and 6 ka (Holocene). The encapsulation preserved not only macro-scale morphological biosignatures such as vascular bundles, veins, phytoliths, and papillae, but also structures down to the cellular level. In the best-preserved samples we also found evidence for organic matter. While fossilization typically occurs over an extended time period as minerals slowly replace organic matter and the host rock lithifies under pressure, the process documented here is instantaneous. Preservation of morphological and chemical biosignatures in impact events can provide snapshots of the ecology in environments that do not otherwise promote a diverse fossil record. We suggest that this would provide a new strategy for identifying signs of possible early life on ancient Mars, where similar target conditions once existed.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
  • 3
    Publication Date: 2012-05-01
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: The Genesis spacecraft, launched in 2001, traveled to a Lagrangian point between the Earth and Sun to collect particles from the solar wind and return them to Earth. However, during the return of the spacecraft in 2004, the parachute failed to open during descent, and the Genesis spacecraft crashed into the Utah desert. Many of the solar wind collectors were broken into smaller pieces, and the field team rapidly collected the capsule and collector pieces for later assessment. On each of the next few days, the team discovered that various collectors had survived intact, including three of four concentrator targets. Within a month, the team had imaged more than 10,000 fragments and packed them for transport to the Astromaterials Acquisition and Curation Office within the ARES Directorate at JSC. Currently, the Genesis samples are curated along with the other extraterrestrial sample collections within ARES. Although they were broken and dirty, the Genesis solar wind collectors still offered the science community the opportunity to better understand our Sun and the solar system as a whole. One of the more highly prized concentrator collectors survived the crash almost completely intact. The Genesis Concentrator was designed to concentrate the solar wind by a factor of at least 20 so that solar oxygen and nitrogen isotopes could be measured. One of these materials was the Diamond-on-Silicon (DoS) concentrator target. Unfortunately, the DoS concentrator broke on impact. Nevertheless, the scientific value of the DoS concentrator target was high. The Genesis Allocation Committee received a request for approximately 1 cm(sup 2) of the DoS specimen taken near the focal point of the concentrator for the analysis of solar wind nitrogen isotopes. The largest fragment, Genesis sample 60000, was designated for this allocation and needed to be precisely cut. The requirement was to subdivide the designated sample in a manner that prevented contamination of the sample and minimized the risk of losing or breaking the precious requested sample fragment. The Genesis curator determined that the use of laser scribing techniques to "cut" a precise line and subsequently cleave the sample (in a controlled break of the sample along that line) was the best method for accomplishing the sample subdivision. However, there were risks, including excess heating of the sample, that could cause some of the implanted solar wind to be lost via thermal diffusion. Accidentally breaking the sample during the handling and cleaving process was an additional risk. Early in fiscal year 2013, to address this delicate, complicated task, the ARES Directorate assembled its top scientists to develop a cutting plan that would ensure success when applied to the actual concentrator target wafer; i.e., to produce an approximately 1 cm(sup 2) piece from the requested area of the wafer. The team, subsequently referred to as the JSC Genesis Tiger Team, spent months researching and testing parameters and techniques related to scribing, cleaving, transporting, handling, and holding (i.e., mounting) the specimen. The investigation required considerable "thinking outside the box," and many, many trials using nonflight wafer analogs. After all preliminary testing, the following method was adopted as the final cutting plan. It was used in two final end-to-end practice runs before being used on the actual flight target wafer. The wafer was oriented on the laser cutting stage with the 100 and 010 directions of the wafer parallel to the corresponding X and Y directions of the cutting stage. The laser was programed to scribe 31 lines of the appropriate length along the Y stage direction. The programed scribe lines were separated by 5 micron in the X direction. The laser parameters were set as follows: (1) The laser power was 0.5 watts; (2) each line consisted of 50 passes, with the Z position being advanced 5 micron per pass; and (3) 30 s would elapse before the next line was scribed to allow for wafer cool down from any possible heating via the laser. The ablated material that "stuck" in the "scribe-cut" was removed from the "cut" using an ultrasonic micro-tool. After all the ablated silicon was removed from the wafer, the wafer was repositioned in exactly the same orientation on the laser stage. The laser was focused using the bottom of the wafer channel, and the 31-line scribing pattern described above was reprogrammed using the Z position of the groove bottom as the starting Z value instead of the top wafer surface, which was used previously. Upon completion of the second set of scribes, the ultrasonic micro-tool was again used to clean out the cut. The wafer was remounted on the stage in exactly the same orientation as before. The laser was again focused on the bottom of the groove. This time, however, the laser was.programed to scribe only one line down the exact center of the channel. The final scribe line consisted of 100 passes with a Z advance of 5 micron per pass and with the laser power set at 0.5 watts. As mentioned above, the final cutting plan was practiced in two end-to-end trials using non-flight, triangular-shaped silicon wafers similar in size and orientation to the actual DOS 60000 target sample. The actual scribing of the triangular-shaped wafers required scribing two lines and cleaving (i.e. scribe-cleave, then scribe-cleave) to obtain the piece requested for allocation. Early in December 2012, after many months of experiments and practicing and perfecting the techniques and procedures, the team successfully subdivided the Genesis DoS 60000 target sample, one of the most scientifically important samples from the Genesis mission (figure 2). On December 17, 2012, the allocated piece of concentrator target sample was delivered to the requesting principal investigator.The cutting plan developed for the subdivision of this sample will be used as the model for subdividing future requested Genesis flight wafers (appropriately modified for different wafer types).
    Keywords: Lasers and Masers
    Type: ARES Biennial Report 2012 Final; 44-46; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Sutter's Mill meteorite is a newly fallen carbonaceous chondrite that was collected and curated quickly after its fall. Preliminary petrographic and isotopic investigations suggest affinities to the CM2 carbonaceous chondrites. The primitive nature of this meteorite and its rapid recovery provide an opportunity to investigate primordial solar system organic matter in a unique new sample. Here we report in-situ analyses of organic nanoglobules in the Sutter's Mill meteorite using UV fluorescence imaging, Fourier-transform infrared spectroscopy (FTIR), scanning transmission electron microscopy (STEM), NanoSIMS, and ultrafast two-step laser mass spectrometry (ultra-L2MS).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27943 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Genesis Allocation Committee received a request for ~ 1 square centimeter of the diamond-like-carbon (DLC) concentrator target for the analysis of solar wind nitrogen isotopes. The target consists of a single crystal float zone (FZ) silicon substrate having a thickness on the order of 550 micrometers with a 1.5-3.0 micrometer-thick coating of DLC on the exposed surface. The solar wind is implanted shallowly in the front side DLC. The original target was a circular quadrant with a radius of 3.1 cm; however, the piece did not survive intact when the spacecraft suffered an anomalous landing upon returning to Earth on September 8, 2004. An estimated 75% of the DLC target was recovered in at least 18 fragments. The largest fragment, Genesis sample 60000, has been designated for this allocation and is the first sample to be subdivided using our laser scribing system Laser subdivision has associated risks including thermal diffusion of the implant if heating occurs and unintended breakage during cleavage. A careful detailed study and considerable subdividing practice using non-flight FZ diamond on silicon, DOS, wafers has considerably reduced the risk of unplanned breakage during the cleaving process. In addition, backside scribing reduces the risk of possible thermal excursions affecting the implanted solar wind, implanted shallowly in the front side DLC.
    Keywords: Lasers and Masers
    Type: JSC-CN-27946 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Papers presented at the first Lunar Science Conference [1] and those published in the subsequent Science Moon Issue [2] reported the C content of Apollo II soils, breccias, and igneous rocks as rang-ing from approx.50 to 250 parts per million (ppm). Later Fegley & Swindle [3] summarized the C content of bulk soils from all the Apollo missions as ranging from 2.5 (Apollo 15) to 280 ppm (Apollo 16) with an overall average of 124+/- 45 ppm. These values are unexpectedly low given that multiple processes should have contributed (and in some cases continue to contribute) to the lunar C inventory. These include exogenous accretion of cometary and asteroidal dust, solar wind implantation, and synthesis of C-bearing species during early lunar volcanism. We estimate the contribution of C from exogenous sources alone is approx.500 ppm, which is approx.4x greater than the reported average. While the assessm ent of indigenous organic matter (OM) in returned lunar samples was one of the primary scientific goals of the Apollo program, extensive analysis of Apollo samples yielded no evidence of any significant indigenous organic species. Furthermore, with such low concentrations of OM reported, the importance of discriminating indigenous OM from terrestrial contamination (e.g., lunar module exhaust, sample processing and handling) became a formidable task. After more than 40 years, with the exception of CH4 [5-7], the presence of indigenous lunar organics still remains a subject of considerable debate. We report for the first time the identification of arguably indigenous OM present within surface deposits of black glass grains collected on the rim of Shorty crater during the Apollo 17 mission by astronauts Eugene Cernan and Harrison Schmitt.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27842 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Presolar grains were identified in meteorite residues 20 years ago based on their exotic isotopic compositions [1]. Their study has provide new insights into stellar evolution and the first view of the original building blocks of the solar system. Organic matter in meteorites and IDPs is highly enriched in D/H and N-15/N-14 at micron scales, possibly due to presolar organic grains [2-4]. These anomalies are ascribed to the partial preservation of presolar cold molecular cloud material. Identifying the carriers of these anomalies and elucidating their physical and chemical properties may give new views of interstellar chemistry and better understanding of the original components of the protosolar disk. However, identifying the carriers has been hampered by their small size and the inability to chemically isolate them. Thanks to major advances in nano-scale analytical techniques and advanced sample preparation, we were able to show that in the Tagish Lake meteorite, the principle carriers of these isotopic anomalies are sub-microns, hollow organic globules [5]. The organic globules likely formed by photochemical processing of organic ices in a cold molecular cloud or the outermost regions of the protosolar disk [5]. Organic globules with similar physical, chemical, and isotopic properties are also recently found from Bells CM2 carbonaceous chondrite, in IDPs [6] and in the comet Wild-2 samples returned by Stardust [7]. These results support the view that microscopic organic grains were widespread constituents of the protoplanetary disk. Their exotic isotopic compositions trace their origins to the outermost portions of the protosolar disk or a presolar cold molecular cloud.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25689 , Frontiers in Life and Earth, Plauetary Sciences; Feb 15, 2012; Kochi; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Analyses of samples returned from Comet Wild-2 by the Stardust spacecraft have resulted in a number of surprising findings that show the origins of comets are more complex than previously suspected [1]. Stardust aerogel tracks show considerable compositional diversity and the degree of impact related thermal modification and destruction is also highly variable. We are performing systematic examinations of entire Stardust tracks to discern the representative mineralogy and origins of comet Wild 2 components and to search for well preserved fine grained materials. Previously, we used ultramicrotomy to prepare sequential thin sections of entire "carrot" and "bulbous" type tracks along their axis while preserving their original shapes [2]. This technique allows us to characterize the usually well-preserved terminal particle (TP), but also any associated, fine-grained fragments that were shed along the track pathway. This report focuses on coordinated analyses of surviving indigenous cometary materials (crystalline and amorphous) along the aerogel track walls, their interaction with aerogel during collection and comparisons with their TPs. We examined the distribution of fragments throughout the track from the entrance hole to the TP.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25668 , 43rd Lunar aud Plauetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (〈 350K) interaction with aqueous fluids, which based on O isotope data, flowed along thermal gradients within the respective parent bodies. This pervasive aqueous alteration may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-25651 , 43rd Lunar aud Piauetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...