ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (5)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2011-06-02
    Print ISSN: 0938-0108
    Electronic ISSN: 1875-0494
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Natural Sciences in General , Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The vestibulo-ocular reflex (VOR) consists of two intermingled non-linear subsystems; namely, nystagmus and saccade. Typically, nystagmus is analysed using a single sufficiently long signal or a concatenation of them. Saccade information is not analysed and discarded due to insufficient data length to provide consistent and minimum variance estimates. This paper presents a novel sparse matrix approach to system identification of the VOR. It allows for the simultaneous estimation of both nystagmus and saccade signals. We show via simulation of the VOR that our technique provides consistent and unbiased estimates in the presence of output additive noise.
    Keywords: Aerospace Medicine
    Type: DFRC-E-DAA-TN5348 , 34th Annual International Conference of the Engineering in Medicine and Biology; Jun 08, 2012; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The vestibulo-ocular reflex (VOR) is a well-known dual mode bifurcating system that consists of slow and fast modes associated with nystagmus and saccade, respectively. Estimation of continuous-time parameters of nystagmus and saccade models are known to be sensitive to estimation methodology, noise and sampling rate. The stable and accurate estimation of these parameters are critical for accurate disease modelling, clinical diagnosis, robotic control strategies, mission planning for space exploration and pilot safety, etc. This paper presents a novel indirect system identification method for the estimation of continuous-time parameters of VOR employing standardised least-squares with dual sampling rates in a sparse structure. This approach permits the stable and simultaneous estimation of both nystagmus and saccade data. The efficacy of this approach is demonstrated via simulation of a continuous-time model of VOR with typical parameters found in clinical studies and in the presence of output additive noise.
    Keywords: Life Sciences (General)
    Type: DFRC-E-DAA-TN8887 , NASA/TM-2013-216528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-19
    Description: The gravity-sensing organs sense the sum of inertial force due to head translation and head orientation relative to gravity. Normally gravity is constant, and yet the neural sensors show remarkable plasticity. When the force of gravity changes, such as in spaceflight or during centrifugation, the neurovestibular system responds by regulating its neural output, and this response is similar for the vertebrate utricular nerve afferents and for the statocyst hair cell in invertebrates. First, we examine the response of utricular afferents in toadfish following exposure to G on two orbital missions (STS-90 and 95). Within the first day after landing, magnitude of neural response to an applied acceleration was significantly elevated, and re-adaptation back to control values occurred within approximately 30 hours. Time course of return to normal approximately parallels the decrease in vestibular disorientation in astronauts following return. Next, we use well-controlled hyper-G experiments in the vertebrate model to address: If G leads to adaptation and subsequent re-adaptation neural processes, does the transfer from 1G to hyper-G impart the opposite effects and do the effects accompanying transfer from the hyper-G back to the 1G conditions resemble as an analog the transfer from 1G to the microG Results show a biphasic pattern in reaction to 3G exposures: an initial sensitivity up-regulation (3- and 4-day) followed by a significant decrease after longer exposure. Return to control values is on the order of 4-8 days. Utricular sensitivity is strongly regulated up or down by gravity load and the duration of exposure. Interestingly, we found no correlation of response and hair cell synaptic body counts despite the large gain difference between 4- and 16-Day subjects. Lastly, we examine responses of statocyst receptors in land snail following exposure to G on two unmanned Russian Orbital missions (Foton M-2 and -3). Here, we have the ability to measure the output directly from the hair cells. Similar to afferents in vertebrates the hair cells increased their response sensitivity to vestibular stimulation. Two major pieces of information are needed: the precise vertebrate hair cell response to altered gravity and the impact of longer duration exposures on sensory plasticity.
    Keywords: Aerospace Medicine
    Type: ARC-E-DAA-TN4148 , American Society for Gravitational and Space Biology (ASGSB); Nov 02, 2011; San Jose, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Recently, a parallel pathway model to describe ankle dynamics was proposed. This model provides a relationship between ankle angle and net ankle torque as the sum of a linear and nonlinear contribution. A technique to identify parameters of this model in discrete-time has been developed. However, these parameters are a nonlinear combination of the continuous-time physiology, making insight into the underlying physiology impossible. The stable and accurate estimation of continuous-time parameters is critical for accurate disease modeling, clinical diagnosis, robotic control strategies, development of optimal exercise protocols for longterm space exploration, sports medicine, etc. This paper explores the development of a system identification technique to estimate the continuous-time parameters of ankle dynamics. The effectiveness of this approach is assessed via simulation of a continuous-time model of ankle dynamics with typical parameters found in clinical studies. The results show that although this technique improves estimates, it does not provide robust estimates of continuous-time parameters of ankle dynamics. Due to this we conclude that alternative modeling strategies and more advanced estimation techniques be considered for future work.
    Keywords: Life Sciences (General)
    Type: NASA/TM-2014-218314 , DFRC-E-DAA-TN14535
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...