ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (4)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2014-02-05
    Description: The ice shelf caverns around Antarctica are sources of cold and fresh water which contributes to the formation of Antarctic bottom water and thus to the ventilation of the deep basins of the World Ocean. While a realistic simulation of the cavern circulation requires high resolution, because of the complicated bottom topography and ice shelf morphology, the physics of melting and freezing at the ice shelf base is relatively simple. We have developed an analytically solvable box model of the cavern thermohaline state, using the formulation of melting and freezing as in Olbers and Hellmer (2010). There is high resolution along the cavern's path of the overturning circulation whereas the cross-path resolution is fairly coarse. The circulation in the cavern is prescribed and used as a tuning parameter to constrain the solution by attempting to match observed ranges for outflow temperature and salinity at the ice shelf front as well as of the mean basal melt rate. The method, tested for six Antarctic ice shelves, can be used for a quick estimate of melt/freeze rates and the overturning rate in particular caverns, given the temperature and salinity of the inflow and the above mentioned constrains for outflow and melting. In turn, the model can also be used for testing the compatibility of remotely sensed basal mass loss with observed cavern inflow characteristics.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-09-19
    Description: A quasi-geostrophic model of Southern Hemisphere's wintertime atmospheric circulation with horizontal resolution T21 has been coupled to a global ocean circulation model with a resolution of 2° × 2° and simplified physics. This simplified coupled model reproduces qualitatively some features of the first and the second EOF of atmospheric 833 hPa geopotential height in accordance with NCEP data. The variability patterns of the simplified coupled model have been compared with variability patterns simulated by four complex state-of-the-art coupled CMIP5 models. The first EOF of the simplified model is too zonal and does not reproduce the right position of the centre of action over the Pacific Ocean and its extension to the tropics. The agreement in the second EOF between the simplified and the CMIP5 models is better. The total variance of the simplified model is weaker than the observational variance and those of the CMIP5 models. The transport properties of the Southern Ocean circulation are in qualitative accord with observations. The simplified model exhibits skill in reproducing essential features of decadal and multi-decadal climate variability in the extratropical Southern Hemisphere. Notably, 800 yr long coupled model simulations reveal sea surface temperature fluctuations on the timescale of several decades in the Antarctic Circumpolar Current region.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-16
    Description: The design and implementation of a simplified coupled atmosphere-ocean model over mid and high Southern Hemisphere latitudes are described. The development of the model is motivated by the clear indications of important low-frequency variability of extratropical origin in atmosphere-only models and the crucial role of atmosphere-ocean interaction in altering and shaping the climate variability on decadal and multidecadal time-scales. The basic model consists of an idealized quasi-geostrophic model of Southern Hemisphere's wintertime atmospheric circulation coupled to a general ocean circulation model with simplified physics. Model spin-up is described, some basic descriptors of the model climatology are discussed, and it is argued that the model exhibits skill in reproducing essential features of decadal and multi-decadal climate variability in the extratropical Southern Hemisphere. Notably, 1000 yr long coupled model simulations reveal sea surface temperature fluctuations on the timescale of several decades in the Antarctic Circumpolar Current region.
    Print ISSN: 1991-9611
    Electronic ISSN: 1991-962X
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Copernicus
    In:  EPIC3The Cryosphere Discussions, Copernicus, 8(1), pp. 919-951, ISSN: 1994-0440
    Publication Date: 2019-07-16
    Description: The ice shelf caverns around Antarctica are sources of cold and fresh water which contributes to the formation of Antarctic bottom water and thus to the ventilation of the deep basins of the World Ocean. While a realistic simulation of the cavern circulation requires high resolution, because of the complicated bottom topography and ice shelf morphology, the physics of melting and freezing at the ice shelf base is relatively simple. We have developed an analytically solvable box model of the cavern thermohaline state, using the formulation of melting and freezing as in Olbers and Hellmer (2010). There is high resolution along the cavern's path of the overturning circulation whereas the cross-path resolution is fairly coarse. The circulation in the cavern is prescribed and used as a tuning parameter to constrain the solution by attempting to match observed ranges for outflow temperature and salinity at the ice shelf front as well as of the mean basal melt rate. The method, tested for six Antarctic ice shelves, can be used for a quick estimate of melt/freeze rates and the overturning rate in particular caverns, given the temperature and salinity of the inflow and the above mentioned constrains for outflow and melting. In turn, the model can also be used for testing the compatibility of remotely sensed basal mass loss with observed cavern inflow characteristics.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...