ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (6)
Collection
Language
Years
Year
  • 1
    Description / Table of Contents: Elevation data are a critical element in most geoscience applications. From geological mapping to modelling Earth systems and processes geologists need to understand the shape of the Earth's surface. Vast amounts of digital elevation data exist, from large-scale global to smaller scale regional datasets, and many datasets have been merged to improve scale and accuracy. For each application, decisions are made on which elevation data to use driven by cost, resolution and accuracy. This publication shows the current status of available digital elevation data and illustrates the key applications. The types of data assessed include: ASTER stereo satellite imagery, Shuttle Radar Topographic Mapping data, airborne laser and radar such as NEXTMap, and Multibeam Bathymetry. Applications covered include: glacial deposits, landslides, coastal erosion and other geological hazards. Technical issues discussed include: accuracy analysis, derived product creation, software comparisons and copyright considerations. This volume is a comprehensive look at elevation models for geoscience.
    Pages: Online-Ressource (148 Seiten)
    ISBN: 978186239313
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 345: 1-4.
    Publication Date: 2010-12-14
    Description: Elevation data are a critical element in any geoscience application. From the fundamentals of geological mapping to more advanced three-dimensional (3D) modelling of Earth systems there must be an understanding of the shape of the Earth's surface. Vast amounts of digital elevation data exist, from large-scale global datasets to smaller-scale regional datasets, and in many cases datasets have been merged to improve scale and accuracy. For each application decisions must be made on which elevation data are appropriate. This will depend on many factors including the cost, resolution and accuracy of the data. The types of data discussed in this special publication include: ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), LiDAR (Light Detection And Ranging) – terrestrial and airborne, NEXTMap, SRTM (Shuttle Radar Topography Mission) and multibeam bathymetry. Applications covered include: landslide mapping, coastal erosion, glacial deposits and hazard mapping, and some of the issues discussed include: accuracy analysis, derived product creation, software comparisons and copyright considerations (Table 1). Since some of the papers were written for the Special Publication certain datasets have evolved and been created; for example, the GDEM global elevation dataset derived from ASTER data. This illustrates the fast moving nature of this field. With the proliferation in data available for the production of digital elevation models (DEMs) it is increasingly important to understand how to use the raw data correctly and effectively. Giglierano discusses the use of LiDAR for natural resource mapping applications...
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 345: 135-143.
    Publication Date: 2010-12-14
    Description: Environmental scientists are both producers and consumers of data. Numerous studies have shown that significant amounts of scientists' time can be consumed in acquiring, managing and transforming data prior to their use. To facilitate the work of its scientists, the British Geological Survey (BGS) has identified a series of national datasets that are required by scientists across the organization. The BGS then seeks to acquire and manage these centrally, and to supply them to the scientists in formats that they normally use. Making these datasets readily available helps to:enhance the quality of the science; promote interdisciplinary working; reduce costs.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-09-19
    Description: The ‘Big Data’ paradigm will revolutionize understanding of the natural environment. New technologies are revolutionizing our ability to measure, model, understand and make robust, evidence-based predictions at increasingly spatial and temporal resolutions. Realising this potential will require reengineering of environmental sciences in the observation infrastructure, in data management and processing, and in the culture of environmental sciences. Collectively these will deliver vibrant, integrated research communities. Manipulating such enormous data streams requires a new data infrastructure underpinned by four technologies. Pervasive environmental sensor networks will continuously measure suites of environmental parameters and transmit these wirelessly to scientists, regulators and modellers in real time. Integrated environmental modelling will process data, streamed from sensor networks, using components synthesizing natural systems developed by domain experts, each of which will be linked at runtime to other expert developed components. Semantic interoperability will facilitate cross-disciplinary working, as has already happened within the biosciences so that data items can be exchanged with unambiguous, shared meaning. Cloud computing will revolutionize data processing allowing scalable computing close to observations on an as-needed basis. Leveraging the full potential of these technologies requires a major culture change in the environmental sciences where national and continental scale observatories of sensors networks become basic scientific tools.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-01-01
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-01-01
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...