ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (3)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2010-12-01
    Print ISSN: 0949-1775
    Electronic ISSN: 1432-0517
    Topics: Chemistry and Pharmacology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-13
    Description: The assessment of emission factors for many peatlands is difficult, and reliable data on the exchange of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) between soil and atmosphere of these areas is particularly scarce. Reasons for this are the multitude of soil and land use combinations that control greenhouse gas exchange and the high effort associated with data acquisition. We investigated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (July 2007–June 2009) in an Atlantic raised bog in Northwest Germany. We set up three sites representing different land use intensities: intensive grassland (mineral fertilizer, cattle manure and 4–5 cuts per year); extensive grassland (no fertilizer or manure, maximal 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). We obtained seasonal and annual estimates of greenhouse gas exchange based on closed chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, CO2 NEE determinations were carried out 3–4 weekly. To get annual sums the CH4 and N2O fluxes were interpolated linearly while NEE was modelled. The intensive grassland site emitted 548 ± 169 g CO2-C m−2 in the first and 817 ± 140 g CO2-C m−2 in the second year. The extensive grassland site showed a slight uptake in the first year (−148 ± 143 g CO2-C m−2), and a small emission of 88 ± 146 g CO2-C m−2 in the second year. In contrast to these agriculturally used sites, the near-natural site took up CO2-C in both years (−8 ± 68 g CO2-C m−2 and −127 ± 53 g CO2-C m−2). Under consideration of N2O and CH4 exchange, the total average greenhouse warming potential (GWP) for 2008 amounts to 441 ± 157 g m−2, 14 ± 152 g m−2 and 31 ± 68 g m−2 CO2-C-equivalent for the intensive grassland, the extensive grassland and the near-natural site, respectively. Despite inter-annual variability, rewetting contributes considerably to mitigating GHG emission from formerly drained peatlands. Already extensively used grassland on moderately drained peat approaches the carbon sequestration potential of near-natural sites, albeit it may oscillate between being a small sink and being a small source depending on interannual climatic variability.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-02-15
    Description: Wetlands can either be net sinks or net sources of greenhouse gases (GHGs), depending on the mean annual water level and other factors like average annual temperature, vegetation development, and land use. Whereas drained and agriculturally used peatlands tend to be carbon dioxide (CO2) and nitrous oxide (N2O) sources but methane (CH4) sinks, restored (i.e. rewetted) peatlands rather incorporate CO2, tend to be N2O neutral and release CH4. One of the aims of peatland restoration is to decrease their global warming potential (GWP) by reducing GHG emissions. We estimated the greenhouse gas exchange of a peat bog restoration sequence over a period of 2 yr (1 July 2007–30 June 2009) in an Atlantic raised bog in northwest Germany. We set up three study sites representing different land use intensities: intensive grassland (deeply drained, mineral fertilizer, cattle manure and 4–5 cuts per year); extensive grassland (rewetted, no fertilizer or manure, up to 1 cutting per year); near-natural peat bog (almost no anthropogenic influence). Daily and annual greenhouse gas exchange was estimated based on closed-chamber measurements. CH4 and N2O fluxes were recorded bi-weekly, and net ecosystem exchange (NEE) measurements were carried out every 3–4 weeks. Annual sums of CH4 and N2O fluxes were estimated by linear interpolation while NEE was modelled. Regarding GWP, the intensive grassland site emitted 564 ± 255 g CO2–C equivalents m−2 yr−1 and 850 ± 238 g CO2–C equivalents m−2 yr−1 in the first (2007/2008) and the second (2008/2009) measuring year, respectively. The GWP of the extensive grassland amounted to −129 ± 231 g CO2–C equivalents m−2 yr−1 and 94 ± 200 g CO2–C equivalents m−2 yr−1, while it added up to 45 ± 117 g CO2–C equivalents m−2 yr−1 and −101 ± 93 g CO2–C equivalents m−2 yr−1 in 2007/08 and 2008/09 for the near-natural site. In contrast, in calendar year 2008 GWP aggregated to 441 ± 201 g CO2–C equivalents m−2 yr−1, 14 ± 162 g CO2–C equivalents m−2 yr−1 and 31 ± 75 g CO2–C equivalents m−2 yr−1 for the intensive grassland, extensive grassland, and near-natural site, respectively. Despite inter-annual variability, rewetting contributes considerably to mitigating GHG emission from formerly drained peatlands. Extensively used grassland on moderately drained peat approaches the carbon sequestration potential of near-natural sites, although it may oscillate between being a small sink and being a small source depending on inter-annual climatic variability.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...