ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2011-10-01
    Description: Australia is distinctive because it experienced first-order, broad-scale vertical motions during the Cenozoic. Here, we use plate-tectonic reconstructions and a model of mantle convection to quantitatively link the large-scale flooding history of the continent to mantle convection since 50 Ma. Subduction-driven geodynamic models show that Australia undergoes a 200 m northeast downward tilt as it approaches and overrides subducted slabs between Melanesia and the proto–Tonga-Kermadec subduction systems. However, the model only produces the observed continentwide subsidence, with 300 m of northeast downward tilt since the Eocene, if we assume that Australia has moved northward away from a relatively hot mantle anomaly. The models suggest that Australia's paleoshoreline evolution can only be reproduced if the continent moved northward, away from a large buoyant anomaly. This results in continentwide subsidence of ∼200 m. The additional progressive, continentwide tilting down to the northeast can be attributed to the horizontal motion of the continent toward subducted slabs sinking below Melanesia.
    Print ISSN: 1941-8264
    Electronic ISSN: 1947-4253
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2014-10-17
    Description: Atopic dermatitis is a multifactorial allergic skin disease in humans and dogs. Genetic predisposition, immunologic hyperreactivity, a defective skin barrier, and environmental factors play a role in its pathogenesis. The aim of this study was to analyze gene expression in the skin of dogs sensitized to house dust mite antigens. Skin biopsy samples were collected from six sensitized and six nonsensitized Beagle dogs before and 6 hr and 24 hr after challenge using skin patches with allergen or saline as a negative control. Transcriptome analysis was performed by the use of DNA microarrays and expression of selected genes was validated by quantitative real-time RT-PCR. Expression data were compared between groups (unpaired design). After 24 hr, 597 differentially expressed genes were detected, 361 with higher and 226 with lower mRNA concentrations in allergen-treated skin of sensitized dogs compared with their saline-treated skin and compared with the control specimens. Functional annotation clustering and pathway- and co-citation analysis showed that the genes with increased expression were involved in inflammation, wound healing, and immune response. In contrast, genes with decreased expression in sensitized dogs were associated with differentiation and barrier function of the skin. Because the sensitized dogs did not show differences in the untreated skin compared with controls, inflammation after allergen patch test probably led to a decrease in the expression of genes important for barrier formation. Our results further confirm the similar pathophysiology of human and canine atopic dermatitis and revealed genes previously not known to be involved in canine atopic dermatitis.
    Electronic ISSN: 2160-1836
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-07-27
    Description: Author(s): R. C. Bilodeau, N. D. Gibson, C. W. Walter, D. A. Esteves-Macaluso, S. Schippers, A. Müller, R. A. Phaneuf, A. Aguilar, M. Hoener, J. M. Rost, and N. Berrah We have obtained experimental photo-double- and photo-triple-detachment cross sections for the fullerene negative ion using Advanced Light Source photons of 17–90 eV. The cross sections are 2 and 2.5 times larger than those for C 60 and appear to be compressed and shifted in photon energy as compared... [Phys. Rev. Lett. 111, 043003] Published Fri Jul 26, 2013
    Keywords: Atomic, Molecular, and Optical Physics
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2014-08-13
    Description: This work employs in situ measurement data and constructive simulations to examine the underlying physical mechanisms that drive spacecraft plume interactions with the space environment in low Earth orbit. The study centers on observations ofthe enhanced flux of plasma generated during a maneuver of Space Shuttle Endeavour as part of the Sensor Test for Orion Relative Navigation Risk Mitigation (STORRM) experiment in May 2011. The Canary electrostatic analyzer (ESA) instrument mounted on the port-side truss of the International Space Station (ISS) indicated an elevated ion current during the shuttle maneuver. The apparent source of enhanced ion current is a result of interaction of the spacecraft thruster plume with the rarefied ambient ionosphere, which generates regions of relatively high-density plasma through charge exchange between the neutral plume and ambient ions. To reconstruct this event, unsteady simulation data were generated using a combined direct simulation Monte Carlo/Particle in Cell methodology, which employed detailed charge-exchange cross section data and a magnetic field model. The simulation provides local plasma characteristics at the ESA sensor location, and a sensor model is subsequently used to transform the local properties into a prediction of measured ion current. The predicted and observed total current are presented as a function of time over a 30 second period of pulsed thruster firings. A strong correlation is observed in the temporal characteristics of the simulated and measured total current, and good agreement is also achieved in the total current predicted by the model. These results support conclusions that: (1) the enhanced flux of plasma observed by the ESA instrument is associated with Space Shuttle thruster firings, and (2) the simulation model captures the essential features of the plume interactions based on the observation data.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2014-07-19
    Description: Among animals, genome sizes range from 20 Mb to 130 Gb, with 380-fold variation across vertebrates. Most of the largest vertebrate genomes are found in salamanders, an amphibian clade of 660 species. Thus, salamanders are an important system for studying causes and consequences of genomic gigantism. Previously, we showed that plethodontid salamander genomes accumulate higher levels of long terminal repeat (LTR) retrotransposons than do other vertebrates, although the evolutionary origins of such sequences remained unexplored. We also showed that some salamanders in the family Plethodontidae have relatively slow rates of DNA loss through small insertions and deletions. Here, we present new data from Cryptobranchus alleganiensis , the hellbender. Cryptobranchus and Plethodontidae span the basal phylogenetic split within salamanders; thus, analyses incorporating these taxa can shed light on the genome of the ancestral crown salamander lineage, which underwent expansion. We show that high levels of LTR retrotransposons likely characterize all crown salamanders, suggesting that disproportionate expansion of this transposable element (TE) class contributed to genomic expansion. Phylogenetic and age distribution analyses of salamander LTR retrotransposons indicate that salamanders’ high TE levels reflect persistence and diversification of ancestral TEs rather than horizontal transfer events. Finally, we show that relatively slow DNA loss rates through small indels likely characterize all crown salamanders, suggesting that a decreased DNA loss rate contributed to genomic expansion at the clade’s base. Our identification of shared genomic features across phylogenetically distant salamanders is a first step toward identifying the evolutionary processes underlying accumulation and persistence of high levels of repetitive sequence in salamander genomes.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-06-01
    Description: Travouillon et al. (2012) challenge our interpretation of proxy records (Herold et al., 2011), citing five points for rainforest at Riversleigh and across northern and central Australia in the early to middle Miocene; points that we refute here. (1) Cenogram/body mass distribution patterns Travouillon et al. (2009) were equivocal in assigning some fauna sites to open forest or rainforest using cenograms alone, but using cenograms and body mass distribution (BMD) in combination, they interpreted the majority of the Riversleigh sites as rainforest. Yet, their Discriminant Function Analysis (DFA) of the same faunas identified a mix of open forest (2/6) and rainforest sites (4/6) for the early Miocene, and all five middle Miocene sites as open forest. Thus their own data imply a mosaic of habitats in space and time in the Riversleigh area of northern Australia.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-03-21
    Description: Nature Materials 12, 293 (2013). doi:10.1038/nmat3597 Authors: C. E. Graves, A. H. Reid, T. Wang, B. Wu, S. de Jong, K. Vahaplar, I. Radu, D. P. Bernstein, M. Messerschmidt, L. Müller, R. Coffee, M. Bionta, S. W. Epp, R. Hartmann, N. Kimmel, G. Hauser, A. Hartmann, P. Holl, H. Gorke, J. H. Mentink, A. Tsukamoto, A. Fognini, J. J. Turner, W. F. Schlotter, D. Rolles, H. Soltau, L. Strüder, Y. Acremann, A. V. Kimel, A. Kirilyuk, Th. Rasing, J. Stöhr, A. O. Scherz & H. A. Dürr Ultrafast laser techniques have revealed extraordinary spin dynamics in magnetic materials that equilibrium descriptions of magnetism cannot explain. Particularly important for future applications is understanding non-equilibrium spin dynamics following laser excitation on the nanoscale, yet the limited spatial resolution of optical laser techniques has impeded such nanoscale studies. Here we present ultrafast diffraction experiments with an X-ray laser that probes the nanoscale spin dynamics following optical laser excitation in the ferrimagnetic alloy GdFeCo, which exhibits macroscopic all-optical switching. Our study reveals that GdFeCo displays nanoscale chemical and magnetic inhomogeneities that affect the spin dynamics. In particular, we observe Gd spin reversal in Gd-rich nanoregions within the first picosecond driven by the non-local transfer of angular momentum from larger adjacent Fe-rich nanoregions. These results suggest that a magnetic material’s microstructure can be engineered to control transient laser-excited spins, potentially allowing faster (~ 1 ps) spin reversal than in present technologies.
    Print ISSN: 1476-1122
    Electronic ISSN: 1476-4660
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-06-01
    Description: :— Formation of microcrystalline quartz formation has proven to be effective at preserving porosity in deeply buried sandstone petroleum reservoirs, typically cemented by syntaxial quartz cement. There remains much uncertainty about what controls the growth of microcrystalline quartz and how it prevents syntaxial quartz overgrowths. Here, the Cretaceous Heidelberg Formation, Germany, provides a natural laboratory to study silica polymorphs and develop an understanding of their crystallography, paragenetic relationships, and growth mechanisms, leading to a new understanding of the growth mechanisms of porosity-preserving microcrystalline quartz. Data from scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) data illustrate that porosity-preserving microcrystalline quartz cement is misoriented with respect to the host grain upon which it grows. In contrast, ordinary quartz cement grows in the same orientation (epitaxially) as the host quartz sand grain, and typically fills pore spaces. EBSD and TEM observations reveal nanofilms of amorphous silica (~ 50–100 nm in thickness) between the microcrystalline quartz and the host grain. The microcrystalline quartz is interpreted to be misoriented relative to the host grain, because the amorphous silica nanofilm prevents growth of epitaxial quartz cement. Instead, the microcrystalline quartz is similar to chalcedony with [11–20] perpendicular to the growth surface and c axes parallel with, but randomly distributed (rotated) on, the host quartz grain surface. Development of pore-filling quartz growing into the pore (in the fast-growing c- axis direction) is thus inhibited due to the amorphous silica nanofilm initially and, subsequently, the misoriented microcrystalline quartz that grew on the amorphous silica.
    Print ISSN: 1527-1404
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-12-29
    Description: Evolutionary changes in genome size result from the combined effects of mutation, natural selection, and genetic drift. Insertion and deletion mutations (indels) directly impact genome size by adding or removing sequences. Most species lose more DNA through small indels (i.e., ~1–30 bp) than they gain, which can result in genome reduction over time. Because this rate of DNA loss varies across species, small indel dynamics have been suggested to contribute to genome size evolution. Species with extremely large genomes provide interesting test cases for exploring the link between small indels and genome size; however, most large genomes remain relatively unexplored. Here, we examine rates of DNA loss in the tetrapods with the largest genomes—the salamanders. We used low-coverage genomic shotgun sequence data from four salamander species to examine patterns of insertion, deletion, and substitution in neutrally evolving non-long terminal repeat (LTR) retrotransposon sequences. For comparison, we estimated genome-wide DNA loss rates in non-LTR retrotransposon sequences from five other vertebrate genomes: Anolis carolinensis , Danio rerio , Gallus gallus , Homo sapiens , and Xenopus tropicalis . Our results show that salamanders have significantly lower rates of DNA loss than do other vertebrates. More specifically, salamanders experience lower numbers of deletions relative to insertions, and both deletions and insertions are skewed toward smaller sizes. On the basis of these patterns, we conclude that slow DNA loss contributes to genomic gigantism in salamanders. We also identify candidate molecular mechanisms underlying these differences and suggest that natural variation in indel dynamics provides a unique opportunity to study the basis of genome stability.
    Electronic ISSN: 1759-6653
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2014-12-01
    Print ISSN: 0261-3069
    Electronic ISSN: 1873-4197
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...