ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 2010-2014  (2)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2014-01-01
    Beschreibung: Carbonate is abundant in many Neolithic tells and is a potentially useful archive for dating and climate reconstruction. In this paper, we focus on the mineralogy, radiocarbon dating, and stable isotope systematics of carbonate in hackberry endocarps. Hackberry fruits and seeds are edible in fresh and stored forms, and they were consumed in large quantities in many Neolithic sites in the Near East, including the site of our study, Aşıkli Höyük in central Anatolia, an Aceramic Neolithic tell occupied from about 9.4 to 〉 10.3 BP (7.4 to 〉 8.3 BCE). Detailed14C age control provided by archaeological charcoal permits a test of the fidelity in14C dating of hackberry endocarps. Modern endocarps and leaves yield fraction modern14C values of 1.050–1.066, consistent with levels present in the atmosphere when sampled in 2009. On the other hand, archaeological endocarps yield consistently younger ages than associated charcoal by ca. 13014C years (ca. 220 calendar years) for samples about 10,000 years old. We speculate this is caused by the slight addition of calcite or recrystallization to calcite in the endocarp, as detected by scanning electron microscopy. Subtle addition or replacement of calcite by primary aragonite is not widely recognized in the14C community, even though similar effects are reported from other natural carbonates such as shell carbonate. This small (but consistent) level of contamination supports the usefulness of endocarps in dating where other materials like charcoal are lacking. Before dating, however, hackberries should be carefully screened for mineralogical preservation and context. We examined the carbon and oxygen isotopic systematics of the fossil endocarps to try to establish potential source areas for harvesting. Most of the hackberries are enriched in18O compared to local water sources, indicating that they were drawing on highly evaporated soil water, rather than the local (perched and regional) water table sampled in our study. Isotopic evidence therefore suggests that most but not all of the hackberries were harvested from nearby mesas well above the local streams and seeps fed by the water table.
    Print ISSN: 0033-8222
    Digitale ISSN: 1945-5755
    Thema: Klassische Archäologie , Energietechnik , Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-01-01
    Beschreibung: Carbonate is abundant in many Neolithic tells and is a potentially useful archive for dating and climate reconstruction. In this paper, we focus on the mineralogy, radiocarbon dating, and stable isotope systematics of carbonate in hackberry endocarps. Hackberry fruits and seeds are edible in fresh and stored forms, and they were consumed in large quantities in many Neolithic sites in the Near East, including the site of our study, Aşıkli Höyük in central Anatolia, an Aceramic Neolithic tell occupied from about 9.4 to 〉 10.3 BP (7.4 to 〉 8.3 BCE). Detailed 14C age control provided by archaeological charcoal permits a test of the fidelity in 14C dating of hackberry endocarps. Modern endocarps and leaves yield fraction modern 14C values of 1.050–1.066, consistent with levels present in the atmosphere when sampled in 2009. On the other hand, archaeological endocarps yield consistently younger ages than associated charcoal by ca. 130 14C years (ca. 220 calendar years) for samples about 10,000 years old. We speculate this is caused by the slight addition of calcite or recrystallization to calcite in the endocarp, as detected by scanning electron microscopy. Subtle addition or replacement of calcite by primary aragonite is not widely recognized in the 14C community, even though similar effects are reported from other natural carbonates such as shell carbonate. This small (but consistent) level of contamination supports the usefulness of endocarps in dating where other materials like charcoal are lacking. Before dating, however, hackberries should be carefully screened for mineralogical preservation and context. We examined the carbon and oxygen isotopic systematics of the fossil endocarps to try to establish potential source areas for harvesting. Most of the hackberries are enriched in 18O compared to local water sources, indicating that they were drawing on highly evaporated soil water, rather than the local (perched and regional) water table sampled in our study. Isotopic evidence therefore suggests that most but not all of the hackberries were harvested from nearby mesas well above the local streams and seeps fed by the water table.
    Print ISSN: 0033-8222
    Digitale ISSN: 1945-5755
    Thema: Klassische Archäologie , Energietechnik , Geologie und Paläontologie
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...