ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 2010-2014  (2)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-07-13
    Description: Impact processes at all scales have been involved in the formation and subsequent evolution of Gale crater. Small impact craters in the vicinity of the Curiosity MSL landing site and rover traverse during the 364 Sols after landing have been studied both from orbit and the surface. Evidence for the effect of impacts on basement outcrops may include loose blocks of sandstone and conglomerate, and disrupted (fractured) sedimentary layers, which are not obviously displaced by erosion. Impact ejecta blankets are likely to be present, but in the absence of distinct glass or impact melt phases are difficult to distinguish from sedimentary/volcaniclastic breccia and conglomerate deposits. The occurrence of individual blocks with diverse petrological characteristics, including igneous textures, have been identified across the surface of Bradbury Rise, and some of these blocks may represent distal ejecta from larger craters in the vicinity of Gale. Distal ejecta may also occur in the form of impact spherules identified in the sediments and drift material. Possible examples of impactites in the form of shatter cones, shocked rocks, and ropy textured fragments of materials that may have been molten have been observed, but cannot be uniquely confirmed. Modification by aeolian processes of craters smaller than 40 m in diameter observed in this study, are indicated by erosion of crater rims, and infill of craters with aeolian and airfall dust deposits. Estimates for resurfacing suggest that craters less than 15 m in diameter may represent steady state between production and destruction. The smallest candidate impact crater observed is 0.6 m in diameter. The observed crater record and other data are consistent with a resurfacing rate of the order of 10 mm/Myr; considerably greater than the rate from impact cratering alone, but remarkably lower than terrestrial erosion rates.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN22564 , Icarus (ISSN 0019-1035); 249; 108-128
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-20
    Description: The Humboldt Current System is a highly productive ecosystem that is subject to the dynamics of the El Niño Southern Oscillation (ENSO). El Niño (EN, the warm phase of ENSO) causes vital changes in surface water temperature, oxygen levels, and salinity conditions, which arc reflected in various responses of coastal pelagic and benthic organisms. For very shallow habitats such as sandy beaches, temperature and salinity are considered the principal parameters changing during strong EN. However, the mechanisms by which these changes effect change on the structure of coastal populations remains largely unknown. The surf clam Donax ohesulus is dominant on large sandy beaches of the Humboldt Current System. Its biogeographical distribution is largely influenced by EN-induced environmental changes. Despite the species' key role in the beach ecosystem, the effects of modified abiotic conditions on the meroplanktonic larval stages and threshold temperatures involved have not yet been investigated. After EN episodes, meroplanktonic larval stages play a crucial role in the medium- and long-term stability of shallow-water species. Thus, this study makes a first attempt to describe the ontogeny of D. ohesulus and examines the effects on development of EN temperature conditions (ENTC) in comparison with normal temperature conditions (NTC). Results indicate that early life history follows a pattern previously described for other donacid bivalves. Development, growth, and mortality of larvae were assessed during a 3-wk in vitro experiment, indicating that larvae reared under ENTC grew and developed faster in comparison with those reared under NTC; mortality was slightly higher under ENTC. During a 2nd experiment, larvae were exposed for 48 h to a distinct range of different salinities (35, 25, 15, and 5 ± 1) at 2 different temperatures (NTC and ENTC). At both temperatures, larvae suffered no mortality at medium and low salinity (35, 25, and 15 ± 1) but showed 100% mortality at very low salinity (5 ± 1) after 16 h at NTC and 32 h at ENTC. Activity of larvae was highest at medium salinity (25 ± 1) and lowest at normal salinity (35 ± 1). The results of this study indicate that early larval stages of D. ohesulus can cope with temperature and salinity changes induced during EN. Only extremely low salinity (5 ± 1) such as that observed close to river mouths may cause high mortality rates in D. ohesulus offspring.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...