ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The simulation of changes in the Earth's climate due to solar and thermal radiative processes with global climate models (GCMs) is highly complex, depending on the parameterization of a multitude of nonlinearly coupled physical processes. In contrast, the germ of global climate change, the radiative forcing from enhanced abundances of greenhouse gases, is relatively well understood. The impressive agreement between detailed radiation calculations and highly resolved spectral radiation measurements in the thermal infrared under cloudless conditions (see, for example, Fig. 1) instills confidence in our knowledge of the sources of gaseous absorption. That the agreement spans a broad range of temperature and humidity regimes using instruments mounted on surface, aircraft, and satellite platforms not only attests to our capability to accurately calculate radiative fluxes under present conditions, but also provides confidence in the spectroscopic basis for computation of fluxes under conditions that might characterize future global climate (e.g., radiative forcing). Alas, the computational costs of highly resolved spectral radiation calculations cannot be afforded presently in GCMs. Such calculations have instead been used as the foundation for approximations implemented in fast but generally less accurate algorithms performing the needed radiative transfer (RT) calculations in GCMs. Credible climate simulations by GCMs cannot be ensured without accurate solar and thermal radiative flux calculations under all types of sky conditions: pristine cloudless, aerosol-laden, and cloudy. The need for accuracy in RT calculations is not only important for greenhouse gas forcing scenarios, but is also profoundly needed for the robust simulation of many other atmospheric phenomena, such as convective processes.
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 91; Issue 3; 305?310
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We introduce global cloud regimes (previously also referred to as "weather states") derived from cloud retrievals that use measurements by the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard the Aqua and Terra satellites. The regimes are obtained by applying clustering analysis on joint histograms of retrieved cloud top pressure and cloud optical thickness. By employing a compositing approach on data sets from satellites and other sources, we examine regime structural and thermodynamical characteristics. We establish that the MODIS cloud regimes tend to form in distinct dynamical and thermodynamical environments and have diverse profiles of cloud fraction and water content. When compositing radiative fluxes from the Clouds and the Earth's Radiant Energy System instrument and surface precipitation from the Global Precipitation Climatology Project, we find that regimes with a radiative warming effect on the atmosphere also produce the largest implied latent heat. Taken as a whole, the results of the study corroborate the usefulness of the cloud regime concept, reaffirm the fundamental nature of the regimes as appropriate building blocks for cloud system classification, clarify their association with standard cloud types, and underscore their distinct radiative and hydrological signatures.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN12849 , Journal of Geophysical Research: Atmospheres; 119; 13; 8362–8383
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The computer codes that calculate the energy budget of solar and thermal radiation in Global Climate Models (GCMs), our most advanced tools for predicting climate change, have to be computationally efficient in order to not impose undue computational burden to climate simulations. By using approximations to gain execution speed, these codes sacrifice accuracy compared to more accurate, but also much slower, alternatives. International efforts to evaluate the approximate schemes have taken place in the past, but they have suffered from the drawback that the accurate standards were not validated themselves for performance. The manuscript summarizes the main results of the first phase of an effort called "Continual Intercomparison of Radiation Codes" (CIRC) where the cases chosen to evaluate the approximate models are based on observations and where we have ensured that the accurate models perform well when compared to solar and thermal radiation measurements. The effort is endorsed by international organizations such as the GEWEX Radiation Panel and the International Radiation Commission and has a dedicated website (i.e., http://circ.gsfc.nasa.gov) where interested scientists can freely download data and obtain more information about the effort's modus operandi and objectives. In a paper published in the March 2010 issue of the Bulletin of the American Meteorological Society only a brief overview of CIRC was provided with some sample results. In this paper the analysis of submissions of 11 solar and 13 thermal infrared codes relative to accurate reference calculations obtained by so-called "line-by-line" radiation codes is much more detailed. We demonstrate that, while performance of the approximate codes continues to improve, significant issues still remain to be addressed for satisfactory performance within GCMs. We hope that by identifying and quantifying shortcomings, the paper will help establish performance standards to objectively assess radiation code quality, and will guide the development of future phases of CIRC
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5732.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-26
    Description: We examine the daytime precipitation characteristics of the International Satellite Cloud Climatology Project (ISCCP) weather states in the extended tropics (35 deg S to 35 deg N) for a 10-year period. Our main precipitation data set is the TRMM Multisatellite Precipitation Analysis 3B42 data set, but Global Precipitation Climatology Project daily data are also used for comparison. We find that the most convective weather state (WS1), despite an occurrence frequency below 10%, is the most dominant state with regard to surface precipitation, producing both the largest mean precipitation rates when present and the largest percent contribution to the total precipitation of the tropical zone of our study; yet, even this weather state appears to not precipitate about half the time. WS1 exhibits a modest annual cycle of domain-average precipitation rate, but notable seasonal shifts in its geographic distribution. The precipitation rates of the other weather states tend to be stronger when occurring before or after WS1. The relative contribution of the various weather states to total precipitation is different between ocean and land, with WS1 producing more intense precipitation on average over ocean than land. The results of this study, in addition to advancing our understanding of the current state of tropical precipitation, can serve as a higher order diagnostic test on whether it is distributed realistically among different weather states in atmospheric models.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.5822.2011
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-26
    Description: The cloud radiative effect (CRE) of each longwave (LW) absorption band of a GCM fs radiation code is uniquely valuable for GCM evaluation because (1) comparing band-by-band CRE avoids the compensating biases in the broadband CRE comparison and (2) the fractional contribution of each band to the LW broadband CRE (f(sub CRE)) is sensitive to cloud top height but largely insensitive to cloud fraction, presenting thus a diagnostic metric to separate the two macroscopic properties of clouds. Recent studies led by the first author have established methods to derive such band ]by ]band quantities from collocated AIRS and CERES observations. We present here a study that compares the observed band-by-band CRE over the tropical oceans with those simulated by three different atmospheric GCMs (GFDL AM2, NASA GEOS-5, and CCCma CanAM4) forced by observed SST. The models agree with observation on the annual ]mean LW broadband CRE over the tropical oceans within +/-1W/sq m. However, the differences among these three GCMs in some bands can be as large as or even larger than +/-1W/sq m. Observed seasonal cycles of f(sub CRE) in major bands are shown to be consistent with the seasonal cycle of cloud top pressure for both the amplitude and the phase. However, while the three simulated seasonal cycles of f(sub CRE) agree with observations on the phase, the amplitudes are underestimated. Simulated interannual anomalies from GFDL AM2 and CCCma CanAM4 are in phase with observed anomalies. The spatial distribution of f(sub CRE) highlights the discrepancies between models and observation over the low-cloud regions and the compensating biases from different bands.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.01281.2012
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-13
    Description: Posters presented at the MODIS Science Team Meeting in Columbia, MD April 29-May 1 will be made available on the MODIS website.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN15189 , MODIS Science Team Meeting; Apr 29, 2014 - May 01, 2014; Columbia, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp 2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp 2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN9148 , Journal of the Atmospheric Sciences; 70; 9; 2794–2807
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-12
    Description: This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It addresses the overlap of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure while also accounting for subgrid-scale variations of aerosols. The method is computationally efficient because of its use of grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table based on radiative transfer calculations. We verify that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous (approximately 1:30PM local time) shortwave DRE of above cloud aerosol (ACA) that generally agrees with more rigorous pixel-level computation within 4 percent. We also estimate the impact of potential CALIOP aerosol optical depth (AOD) retrieval bias of ACA on DRE. We find that the regional and seasonal mean instantaneous DRE of ACA over southeast Atlantic Ocean would increase, from the original value of 6.4 W m(-2) based on operational CALIOP AOD to 9.6 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 1.5 (Meyer et al., 2013) and further to 30.9 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 5 as suggested in (Jethva et al., 2014). In contrast, the instantaneous ACA radiative forcing efficiency (RFE) remains relatively invariant in all cases at about 53 W m(-2) AOD(-1), suggesting a near linear relation between the instantaneous RFE and AOD. We also compute the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global oceans based on 4 years of CALIOP and MODIS data. We find that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds. While we demonstrate our method using CALIOP and MODIS data, it can also be extended to other satellite data sets, as well as climate model outputs.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN13847
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: This document was presented at the NASA Sounder Science Team Meeting held in Greenbelt, MD, September 30-October 2, 2014. The organizers of the meeting plan to post the presentations to a public website.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN18510 , NASA Sounder Science Team Meeting; Sep 30, 2014 - Oct 02, 2014; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.
    Keywords: Meteorology and Climatology; Geophysics
    Type: GSFC-E-DAA-TN9257 , Journal of Geophysical Research: Atmospheres; 118; 10; 4801-4815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...