ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA ESA Interplanetary Probe Workshop (IPPW-9); Jun 01, 2012; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Fluid Mechanics and Thermodynamics
    Type: 9th International Planetary Probe Workshop (IPPW-9); Jun 18, 2012 - Jun 22, 2012; Toulouse; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-24
    Description: As does Earth, Mars presents pronounced global atmospheric circulation patterns. Solar differential heating drives mean meridional overturning (Hadley) circulations which are deep and intense, are hemispherically asymmetric, and where a cross-equatorial single cell dominates. Within middle and high latitudes, thermally indirect eddy-driven (Ferrel) circulation cells have been indicated. Differently, however, large-amplitude orography on planetary and continental scales on Mars can force very non-Earth-like hemispheric circulation patterns. Recent observations from the Mars Reconnaissance Orbiter, "Mars Color Imager" (MARCI) instrument are utilized that emphasize water ice clouds in ultra-violet (UV) wavelengths, and these measurements have been binned into "daily global maps" (DGMs) of water-ice cloud optical depth. The presence of large-scale, extratropical quasi-stationary atmospheric wave disturbances in middle and late winter of the northern hemisphere have been found to be present in such DGMs. In combination with such observations, a full-physics Mars global climate model (NASA ARC marsgcm 2.1) is applied to place the observations into context. During late northern winter, it is found that strong, forced Rossby modes (i.e., planetary waves) exist, and with direct correlation to columnintegrated cloud opacity undulating spatial patterns. At this season, zonal wavenumber s = 2 dominates (in contrast to wavenumber s = 1), consistent with MGS/TES analyses at this particular season (Banfield et al., 2003). Large-scale, planetary waves dictate the "coherence" of the northern polar vortex. Fundamentally, such forced planetary waves influence the polar vortex's impermeability (wave-induced) to tracer transport (e.g., dust and water-ice aerosol) and temporal mean water vapor spatial variations. The large-scale dynamical features of such planetary waves will be highlighted and discussed.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN18963 , American Geophysical Union Fall 2014 Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: Venus Technology Forum; Nov 19, 2013; Washington, DC; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-13
    Description: The dust cycle is critically important for the current climate of Mars. The radiative effects of dust impact the thermal and dynamical state of the atmosphere [1,2,3]. Although dust is present in the Martian atmosphere throughout the year, the level of dustiness varies with season. The atmosphere is generally the dustiest during northern fall and winter and the least dusty during northern spring and summer [4]. Dust particles are lifted into the atmosphere by dust storms that range in size from meters to thousands of kilometers across [5]. Regional storm activity is enhanced before northern winter solstice (Ls~200 degrees - 240 degrees), and after northern solstice (Ls~305 degrees - 340 degrees ), which produces elevated atmospheric dust loadings during these periods [5,6,7]. These pre- and post- solstice increases in dust loading are thought to be associated with transient eddy activity in the northern hemisphere with cross-equatorial transport of dust leading to enhanced dust lifting in the southern hemisphere [6]. Interactive dust cycle studies with Mars General Circulation Models (MGCMs) have included the lifting, transport, and sedimentation of radiatively active dust. Although the predicted global dust loadings from these simulations capture some aspects of the observed dust cycle, there are marked differences between the simulated and observed dust cycles [8,9,10]. Most notably, the maximum dust loading is robustly predicted by models to occur near northern winter solstice and is due to dust lifting associated with down slope flows on the flanks of the Hellas basin. Thus far, models have had difficulty simulating the observed pre- and post- solstice peaks in dust loading.
    Keywords: Meteorology and Climatology
    Type: ARC-E-DAA-TN5396 , Comparative Climatology of Terrestrial Planets Conference; Jun 25, 2012 - Jun 28, 2012; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Experimental results are presented for a series of experiments that addressed the effect of small pinhole defects on the potential lifetime of a Venus superpressure balloon. The experiments were performed on samples of a candidate balloon envelope material through which a single small hole of 80 to 300 microns in diameter was deliberately made in each one by puncturing with a metal pin. The material was mounted horizontally in a test apparatus and then a 2-3 mm thick layer of sulfuric acid was placed on top to mimic balloon wetting at Venus. Acid penetration and damage manifested itself as a darkening of the aluminum metal and adhesive layers around the hole in the balloon material. There were no test conditions under which the acid simply fell through the pinhole due to gravity because the surface tension forces always compensated at this size. Very little acid-damaged material was observed for the smallest 80 micron pinholes while gas flowed through the hole due to balloon-like pressurization: the black spot size was approximately 0.2 mm in diameter after 6 days with 86% sulfuric acid. The damage area grew more quickly in the absence of gas flowing out of an 80 micron hole, namely at a rate of 2 mm/day. It was concluded that the flow of escaping gas out of the hole provides a substantial reduction of the rate of acid penetration and damage. Larger diameter pinholes of approximately 300 micron diameter showed larger growth rates of 0.7 mm/day with gas flow and 1.7 mm/day without. The pinhole size did not change over the duration of these experiments because the material has an outer layer of fluoropolymer film that remained intact during the process and thereby held the hole size constant. None of the damage rates measured in these experiments pose a threat to the lifetime of the balloon over the projected course of a 30 day mission because the affected area is too small to cause a structural failure either through direct damage or increased solar heating and attendant balloon pressurization leading to burst.
    Keywords: Mechanical Engineering; Spacecraft Design, Testing and Performance; Lunar and Planetary Science and Exploration
    Type: AIAA Balloon Systems Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States|AIAA Lighter-Than-Air Systems Technology Conference; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States|AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar; Mar 25, 2013 - Mar 28, 2013; Daytona Beach, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-26
    Description: There is a need for a long-life power generation scheme that could be used downhole in an oil well to produce 1 Watt average power. There are a variety of existing or proposed energy harvesting schemes that could be used in this environment but each of these has its own limitations. The vibrating piezoelectric structure is in principle capable of operating for very long lifetimes (decades) thereby possibly overcoming a principle limitation of existing technology based on rotating turbo-machinery. In order to determine the feasibility of using piezoelectrics to produce suitable flow energy harvesting, we surveyed experimentally a variety of nozzle configurations that could be used to excite a vibrating piezoelectric structure in such a way as to enable conversion of flow energy into useful amounts of electrical power. These included reed structures, spring mass-structures, drag and lift bluff bodies and a variety of nozzles with varying flow profiles. Although not an exhaustive survey we identified a spline nozzle/piezoelectric bimorph system that experimentally produced up to 3.4 mW per bimorph. This paper will discuss these results and present our initial analyses of the device using dimensional analysis and constitutive electromechanical modeling. The analysis suggests that an order-of-magnitude improvement in power generation from the current design is possible.
    Keywords: Electronics and Electrical Engineering
    Type: SPIE Smart Structures and Non-Destructive Evaluation; Mar 09, 2014 - Mar 13, 2014; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: During late autumn through early spring, extratropical regions on Mars exhibit profound mean zonal equator-to-pole thermal contrasts. The imposition of this strong meridional temperature variation supports intense eastward-traveling, synoptic weather systems (i.e., transient baroclinic/barotropic waves) within Mars' extratropical atmosphere. Such disturbances grow, mature and decay within the east-west varying seasonal-mean midlatitude jet stream (i.e., the polar vortex) on the planet. Near the surface, the weather disturbances indicated large-scale spiraling "comma"-shaped dust cloud structures and scimitar-shaped dust fronts, indicative of processes associated with cyclo-/fronto-genesis. The weather systems occur during specific seasons on Mars, and in both hemispheres. The northern hemisphere (NH) disturbances are significantly more intense than their counterparts in the southern hemisphere (SH). Further, the NH weather systems and accompanying frontal waves appear to have significant impacts on the transport of tracer fields (e.g., particularly dust and to some extent water species (vapor/ice) as well). And regarding dust, frontal waves appear to be key agents in the lifting, lofting, organization and transport of this particular atmospheric aerosol. In this paper, a brief background and supporting observations of Mars' extratropical weather systems is presented. This is followed by a short review of the theory and various modeling studies (i.e., ranging from highly simplified, mechanistic and full global circulation modeling investigations) which have been pursued. Finally, a discussion of outstanding issues and questions regarding the character and nature of Mars' extratropical traveling weather systems is offered.
    Keywords: Space Sciences (General)
    Type: ARC-E-DAA-TN7413 , American Meteorological Society annual meeting (AMS); Jan 06, 2013; Austin, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: This paper surveys the options for, and technology status of, balloon vehicles to explore Saturn's moon Titan. A significant amount of Titan balloon concept thinking and technology development has been performed in recent years, particularly following the spectacular results from the descent and landing of the Huygens probe and remote sensing observations by the Cassini spacecraft. There is widespread recognition that a balloon vehicle on the next Titan mission could provide an outstanding and unmatched capability for in situ exploration on a global scale. The rich variety of revealed science targets has combined with a highly favorable Titan flight environment to yield a wide diversity of proposed balloon concepts. The paper presents a conceptual framework for thinking about balloon vehicle design choices and uses it to analyze various Titan options. The result is a list of recommended Titan balloon vehicle concepts that could perform a variety of science missions, along with their projected performance metrics. Recent technology developments for these balloon concepts are discussed to provide context for an assessment of outstanding risk areas and technological maturity. The paper concludes with suggestions for technology investments needed to achieve flight readiness.
    Keywords: Aerodynamics; Spacecraft Design, Testing and Performance
    Type: AIAA Balloon Systems Conference; Sep 20, 2011 - Sep 22, 2011; Virginia Beach, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/report
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...