ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-08-29
    Description: Improvements in our ability to model runoff from glaciers remain an important scientific goal. This paper describes a new temperature-radiation-index glacier melt model specifically enhanced for use in High-Arctic environments, utilising high temporal and spatial resolution datasets while retaining relatively modest data requirements. The model employs several physically constrained parameters and was tuned using a lidar-derived surface elevation model of Midtre Lovénbreen, meteorological data from sites spanning ~70% of the glacier's area-altitude distribution, and periodic ablation surveys during the 2005 melt season. The model explained 80% of the variance in observed ablation across the glacier, an improvement of ~40% on a simplified energy balance model (EBM), yet equivalent to the performance of a full EBM employed at the same location. Model performance was assessed further by comparing potential and measured runoff from the catchment, and through application to an earlier (2004) melt season. The additive model form and consideration of a priori parameters for the Arctic locality were shown to be beneficial, with a planimetry correction eliminating systematic errors in potential runoff. Further parameterisations defining modelled incident radiation failed to yield significant improvements to model output. Our results suggest that such enhanced melt models may perform well for singular melt seasons, yet are highly sensitive to the choice of lapse rates and their transferability to different locations and seasons may be limited. While modelling ablation requires detailed consideration of the transition between snow- and ice-melt, our study suggests that description of the ratio between radiative and turbulent heat fluxes may provide a useful step towards dynamic parameterisation of melt factors in temperature-index models. Copyright © 2012 John Wiley & Sons, Ltd.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-07-17
    Description: The capacity of forests to mitigate global climate change can be negatively influenced by tropospheric ozone that impairs both photosynthesis and stomatal control of plant transpiration, thus affecting ecosystem productivity and watershed hydrology. We have evaluated individual and interactive effects of ozone and climate on late season streamflow for six forested watersheds (38-970,000 ha) located in the southeastern United States. Models were based on 18-26 year data records for each watershed and involved multivariate analysis of interannual variability of late season streamflow in response to physical and chemical climate during the growing season. In all cases, some combination of ozone variables significantly improved model performance over climate-only models. Effects of ozone and ozone×climate interactions were also consistently negative and were proportional to variations in actual ozone exposures, both spatially across the region and over time. Conservative estimates of the influence of ozone on the variability (R 2 ) of observed flow ranged from 7% in the area of lowest ozone exposure in West Virginia to 23% in the areas of highest exposure in Tennessee. Our results are supported by a controlled field study using free-air concentration enrichment (FACE) methodology which indicated progressive ozone-induced loss of stomatal control over tree transpiration during the summer in mixed aspen-birch stands. Despite the frequent assumption that ozone reduces tree water loss, our findings support increasing evidence that ozone at near ambient concentrations can reduce stomatal control of leaf transpiration, and increase water use. Increases in evapotranspiration and associated streamflow reductions in response to ambient ozone exposures are expected to episodically increase the frequency and severity of drought and affect flow-dependent aquatic biota in forested watersheds. Regional and global models of hydrologic cycles and related ecosystem functions should consider potential interactions of ozone with climate under both current and future warmer and ozone enriched climatic conditions. © 2012 Blackwell Publishing Ltd
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-04-28
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...