ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (96)
  • Data
  • 2010-2014  (96)
  • Geosciences  (96)
Collection
  • Books
  • Articles  (96)
  • Data
Year
Journal
  • 1
    Publication Date: 2013-04-03
    Description: [1]  A combined field and laboratory study was conducted to improve our understanding of the chemical and hygroscopic properties of organic compounds in aerosols sampled in the background continental atmosphere. PM 2.5 (particles with aerodynamic diameters smaller than 2.5 µm) aerosols were collected from 24 June to 28 July, 2010 at Storm Peak Laboratory in the Park Range of northwestern Colorado. New particle formation was frequent at Storm Peak Laboratory during this campaign, and the samples were not influenced by regional dust storms. Filter samples were analyzed for organic carbon (OC) and elemental carbon (EC), water soluble OC (WSOC), major inorganic ions, and detailed organic speciation. WSOC was isolated from inorganic ions using solid phase absorbents. Hygroscopic growth factors and cloud condensation nucleus (CCN) activity of the WSOC were measured in the laboratory. Organic compounds comprised the majority (average of 64% with a standard deviation of 9%) of the mass of measured species and WSOC accounted for an average of 89% (with a standard deviation of 21%) of OC mass. Daily samples were composited according to back-trajectories. On average, organic acids, sugars, and sugar alcohols accounted for 12.5 ± 6.2% (average ± standard deviation) of WSOC. Based on the composition of these compounds and that of high molecular weight compounds identified using ultra high resolution mass spectrometry, the organic mass to organic carbon ratio of the WSOC is estimated to be 2.04. The average hygroscopic growth factors at RH = 80% (GF 80 ) were 1.10 ± 0.03 for particles derived from isolated WSOC and 1.27 ± 0.03 for particles derived from the total water-soluble material (WSM). CCN activity followed a similar pattern. The critical diameters at a super-saturation of 0.35% were 0.072 ± 0.009 and 0.094 ± 0.006 µm for particles derived from WSM and isolated WSOC, respectively. These growth factor results compare favorably with estimates from thermodynamic models, which explicitly relate the water activity (RH) to concentration for the total soluble material identified in this study.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-18
    Description: [1]  We have measured the bidirectional reflectance of analogs of dry, wet and frozen Martian soils over a wide range of phase angles in the visible spectral range. All samples were produced from two geologic samples: the standard JSC Mars-1 soil simulant and Hawaiian basaltic sand. In a first step, experiments were conducted with the dry samples to investigate the effects of surface texture. Comparisons with results independently obtained by different teams with similar samples showed a satisfying reproducibility of the photometric measurements as well as a noticeable influence of surface textures resulting from different sample preparation procedures. In a second step, water was introduced to produce wet and frozen samples and their photometry investigated. Optical microscope images of the samples provided information about their micro-texture. Liquid water, even in relatively low amount, resulted in the disappearance of the backscattering peak and the appearance of a forward scattering peak whose intensity increases with the amount of water. Specular reflections only appeared when water was present in an amount large enough to allow water to form a film at the surface of the sample. Icy samples showed a wide variability of photometric properties depending on the physical properties of the water ice. We discuss the implications of these measurements in terms of the expected photometric behavior of the Martian surface, from equatorial to circum-polar regions. In particular, we propose some simple photometric criteria to improve the identification of wet and/or icy soils from multiple observations under different geometries.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-11-09
    Description: A significant source of ozone in the troposphere is transport from the stratosphere. The stratospheric contribution has been estimated mainly using global models that attribute the transport process largely to the global scale Brewer-Dobson circulation and synoptic scale dynamics associated with upper tropospheric jet streams. We report observations from research aircraft that reveal additional transport of ozone-rich stratospheric air downward into the upper troposphere by a leading-line-trailing-stratiform (LLTS) mesoscale convective system (MCS) with convection overshooting the tropopause altitude. The fine-scale transport demonstrated by these observations poses a significant challenge to global models that currently do not resolve storm scale dynamics. Thus the upper tropospheric ozone budget simulated by global chemistry-climate models where large-scale dynamics and photochemical production from lightning-produced NO are the controlling factors may require modification.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-12-09
    Description: Pore size distributions in rocks may be represented by fractal scaling, and fractal descriptions of pore systems may be used for prediction of petrophysical properties such as permeability, tortuosity, diffusivity, and electrical conductivity. Transverse relaxation time ( $${T}_{2}$$ ) distributions determined by nuclear magnetic resonance (NMR) measurements may be used to determine the fractal scaling of the pore system, but the analysis is complicated when internal magnetic field gradients at the pore scale are sufficiently large. Through computations in ideal porous media and laboratory measurements of glass beads and sediment samples, we found that the effect of internal magnetic field gradients was most pronounced in rocks with larger pores and a high magnetic susceptibility contrast between the pore fluid and mineral grains. We quantified this behavior in terms of pore size and Carr-Purcell-Meiboom-Gill (CPMG) half-echo spacing through scaling arguments. We additionally found that the effects of internal field gradients may be mitigated in the laboratory by performing $${T}_{2}$$ measurements with different CPMG half-echo spacings and fitting the apparent fractal dimensions determined by the NMR measurements with a model to determine the true pore system fractal dimension.
    Print ISSN: 0016-8033
    Electronic ISSN: 1942-2156
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-01
    Description: Airborne measurements of aerosol and cloud condensation nuclei (CCN) were conducted aboard the National Oceanic and Atmospheric Administration WP-3D platform during the 2006 Texas Air Quality Study/Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS/GoMACCS). The measurements were conducted in regions influenced by industrial and urban sources. Observations show significant local variability of CCN activity (CCN/CN from 0.1 to 0.5 at s = 0.43%), while variability is less significant across regional scales (∼100 km × 100 km; CCN/CN is ∼0.1 at s = 0.43%). CCN activity can increase with increasing plume age and oxygenated organic fraction. CCN measurements are compared to predictions for a number of mixing state and composition assumptions. Mixing state assumptions that assumed internally mixed aerosol predict CCN concentrations well. Assuming organics are as hygroscopic as ammonium sulfate consistently overpredicted CCN concentrations. On average, the water-soluble organic carbon (WSOC) fraction is 60 ± 14% of the organic aerosol. We show that CCN closure can be significantly improved by incorporating knowledge of the WSOC fraction with a prescribed organic hygroscopicity parameter ($\kappa$ = 0.16 or effective $\kappa$ ∼ 0.3). This implies that the hygroscopicity of organic mass is primarily a function of the WSOC fraction. The overall aerosol hygroscopicity parameter varies between 0.08 and 0.88. Furthermore, droplet activation kinetics are variable and 60% of particles are smaller than the size characteristic of rapid droplet growth.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-02-21
    Description: The multispecies analysis of daily air samples collected at the NOAA Boulder Atmospheric Observatory (BAO) in Weld County in northeastern Colorado since 2007 shows highly correlated alkane enhancements caused by a regionally distributed mix of sources in the Denver-Julesburg Basin. To further characterize the emissions of methane and non-methane hydrocarbons (propane, n-butane, i-pentane, n-pentane and benzene) around BAO, a pilot study involving automobile-based surveys was carried out during the summer of 2008. A mix of venting emissions (leaks) of raw natural gas and flashing emissions from condensate storage tanks can explain the alkane ratios we observe in air masses impacted by oil and gas operations in northeastern Colorado. Using the WRAP Phase III inventory of total volatile organic compound (VOC) emissions from oil and gas exploration, production and processing, together with flashing and venting emission speciation profiles provided by State agencies or the oil and gas industry, we derive a range of bottom-up speciated emissions for Weld County in 2008. We use the observed ambient molar ratios and flashing and venting emissions data to calculate top-down scenarios for the amount of natural gas leaked to the atmosphere and the associated methane and non-methane emissions. Our analysis suggests that the emissions of the species we measured are most likely underestimated in current inventories and that the uncertainties attached to these estimates can be as high as a factor of two.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-01-17
    Description: [1]  We describe a method for determining an optimal centroid–moment tensor solution of an earthquake from a set of static displacements measured using a network of Global Positioning System receivers. Using static displacements observed after the 4 April 2010, M W 7.2 El Mayor-Cucapah, Mexico, earthquake, we perform an iterative inversion to obtain the source mechanism and location, which minimize the least-squares difference between data and synthetics. The efficiency of our algorithm for forward modeling static displacements in a layered elastic medium allows the inversion to be performed in real-time on a single processor without the need for precomputed libraries of excitation kernels; we present simulated real-time results for the El Mayor-Cucapah earthquake. The only a priori information that our inversion scheme needs is a crustal model and approximate source location, so the method proposed here may represent an improvement on existing early warning approaches that rely on foreknowledge of fault locations and geometries.
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-05
    Description: Coal-fired electric power plants produce a large fraction of total U.S. NOx emissions, but NOx from this sector has been declining in the last decade owing to installation of control technology. Nighttime aircraft intercepts of plumes from two different Texas power plants (Oklaunion near Wichita Falls and W. A. Parish near Houston) with different control technologies demonstrate the effect of these reductions on nighttime NOx oxidation rates. The analysis shows that the spatial extent of nighttime-emitted plumes to be quite limited and that mixing of highly concentrated plume NOx with ambient ozone is a determining factor for its nighttime oxidation. The plume from the uncontrolled plant had full titration of ozone through 74 km/2.4 h of downwind transport that suppressed nighttime oxidation of NO2 to higher oxides of nitrogen across the majority of the plume. The plume from the controlled plant did not have sufficient NOx to titrate background ozone, which led to rapid nighttime oxidation of NO2 during downwind transport. A plume model that includes horizontal mixing and nighttime chemistry reproduces the observed structures of the nitrogen species in the plumes from the two plants. The model shows that NOx controls not only reduce the emissions directly but also lead to an additional overnight NOx loss of 36–44% on average. The maximum reduction for 12 h of transport in darkness was 73%. The results imply that power plant NOx emissions controls may produce a larger than linear reduction in next-day, downwind ozone production following nighttime transport.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-08-22
    Description: SUMMARY Displacement time-series recorded by Global Positioning System (GPS) receivers are a new type of near-field waveform observation of the seismic source. We have developed an inversion method which enables the recovery of an earthquake’s mechanism and centroid coordinates from such data. Our approach is identical to that of the ‘classical’ Centroid–Moment Tensor (CMT) algorithm, except that we forward model the seismic wavefield using a method that is amenable to the efficient computation of synthetic GPS seismograms and their partial derivatives. We demonstrate the validity of our approach by calculating CMT solutions using 1 Hz GPS data for two recent earthquakes in Japan. These results are in good agreement with independently determined source models of these events. With wider availability of data, we envisage the CMT algorithm providing a tool for the systematic inversion of GPS waveforms, as is already the case for teleseismic data. Furthermore, this general inversion method could equally be applied to other near-field earthquake observations such as those made using accelerometers.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-14
    Description: Airborne measurements of volatile organic compounds (VOCs) were performed during CalNex 2010 (California Research at the Nexus of Air Quality and Climate Change) in the Los Angeles (LA) basin in May–June 2010 and during ITCT2k2 (Intercontinental Transport and Chemical Transformation) in May 2002. While CO2 enhancements in the basin were similar between the two years, the ΔCO/ΔCO2 ratio had decreased by about a factor of two. The ΔVOC/ΔCO emission ratios stayed relatively constant between the two years. This indicates that, relative to CO2, VOCs in the LA basin also decreased by about a factor of two since 2002. These data are compared with the results from various previous field campaigns dating back as early as 1960 and from the extensive air quality monitoring system in the LA basin going back to 1980. The results show that the mixing ratios of VOCs and CO have decreased by almost two orders of magnitude during the past five decades at an average annual rate of about 7.5%. Exceptions to this trend are the small alkanes ethane and propane, which have decreased slower due to the use and production of natural gas. A comparison with trends in London, UK shows that, due to stricter regulations at the time, VOC mixing ratios in LA decreased earlier than in London, albeit at a slower rate, such that typical mixing ratios in both cities in 2008 were at about the same level.
    Print ISSN: 0148-0227
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...