ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-10-26
    Description: This paper presents a velocity model of the Italian (central Mediterranean) lithosphere in unprecedented detail. The model is derived by inverting a set of 166,000 Pg and Pn seismic wave arrival times, restricted to the highest-quality data available. The tomographic images reveal the geometry of the subduction-collision system between the European, Adriatic, and Tyrrhenian plates, over a larger volume and with finer resolution than previous studies. We find two arcs of low-Vp anomalies running along the Alps and the Apennines, describing the collision zones of underthrusting continental lithospheres. Our results suggest that in the Apennines, a significant portion of the crust has been subducted below the mountain belt. From the velocity model we can also infer thermal softening of the crustal wedge above the subducting Adriatic plate. In the Tyrrhenian back-arc region, strong and extensive low-Vp anomalies depict upwelling asthenospheric material. The tomographic images also allow us to trace the boundary between the Adriatic and the Tyrrhenian plates at Moho depth, revealing some tears in the Adriatic-Ionian subducting lithosphere. The complex lithospheric structure described by this study is the result of a long evolution; the heterogeneities of continental margins, lithospheric underthrusting, and plate indentation have led to subduction variations, slab tears, and asthenospheric upwelling at the present day. The high-resolution model provided here greatly improves our understanding of the central Mediterranean’s structural puzzle. The results of this study can also shed light on the evolution of other regions experiencing both oceanic and continental subduction.
    Description: Published
    Description: B05305
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: lithosphere ; crust ; italy ; plates ; subduction ; europe ; seismicity ; adria ; tyrrhenian ; boundary ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: On 6 April (01:32 UTC) 2009 aMW 6.1 normal faulting earthquake struck the axial area of the Abruzzo region in central Italy. We study the geometry of fault segments using high resolution foreshock and aftershock locations. Two main SW dipping segments, the L’Aquila and Campotosto faults, forming an en echelon system 40 km long (NW trending). The 16 km long L’Aquila fault shows a planar geometry with constant dip (∼48°) through the entire upper crust down to 10 km depth. The Campotosto fault activated by three events with 5.0 ≤ MW ≤ 5.2 shows a striking listric geometry, composed by planar segments with different dips along depth rather than a smoothly curving single fault surface. The investigation of the spatiotemporal evolution of foreshock activity within the crustal volume where the subsequent L’Aquila main shock nucleated allows us to image the progressive activation of the main fault plane. From the beginning of 2009 the foreshocks activated the deepest portion of the fault until a week before the main shock, when the largest foreshock (MW 4.0) triggered a minor antithetic segment. Seismicity jumped back to the main plane a few hours before the main shock. Secondary synthetic and antithetic fault segments are present both on the hanging and footwall of the system. The stress tensor obtained by inverting focal mechanisms of the largest events reveals a NE trending extension and the majority of the aftershocks are kinematically consistent. Deviations from the dominant extensional strain pattern are observed for those earthquakes activating minor structures.
    Description: Published
    Description: B12311
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: reserved
    Keywords: normal fault ; listric fault ; L'Aquila earthquake ; seismicity ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...