ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2012-11-03
    Description: Bacteria play an indispensable role in marine biogeochemistry by recycling dissolved organic matter. Motile species can exploit small, ephemeral solute patches through chemotaxis and thereby gain a fitness advantage over nonmotile competitors. This competition occurs in a turbulent environment, yet turbulence is generally considered inconsequential for bacterial uptake. In contrast, we show that turbulence affects uptake by stirring nutrient patches into networks of thin filaments that motile bacteria can readily exploit. We find that chemotactic motility is subject to a trade-off between the uptake benefit due to chemotaxis and the cost of locomotion, resulting in an optimal swimming speed. A second trade-off results from the competing effects of stirring and mixing and leads to the prediction that chemotaxis is optimally favored at intermediate turbulence intensities.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Taylor, John R -- Stocker, Roman -- New York, N.Y. -- Science. 2012 Nov 2;338(6107):675-9. doi: 10.1126/science.1219417.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23118190" target="_blank"〉PubMed〈/a〉
    Keywords: *Bacterial Physiological Phenomena ; *Chemotaxis ; Computer Simulation ; Ecosystem ; *Microbial Interactions ; Movement ; Seawater/*microbiology ; *Water Movements
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-04-26
    Description: Extensive genomic diversity within coexisting members of a microbial species has been revealed through selected cultured isolates and metagenomic assemblies. Yet, the cell-by-cell genomic composition of wild uncultured populations of co-occurring cells is largely unknown. In this work, we applied large-scale single-cell genomics to study populations of the globally abundant marine cyanobacterium Prochlorococcus. We show that they are composed of hundreds of subpopulations with distinct "genomic backbones," each backbone consisting of a different set of core gene alleles linked to a small distinctive set of flexible genes. These subpopulations are estimated to have diverged at least a few million years ago, suggesting ancient, stable niche partitioning. Such a large set of coexisting subpopulations may be a general feature of free-living bacterial species with huge populations in highly mixed habitats.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kashtan, Nadav -- Roggensack, Sara E -- Rodrigue, Sebastien -- Thompson, Jessie W -- Biller, Steven J -- Coe, Allison -- Ding, Huiming -- Marttinen, Pekka -- Malmstrom, Rex R -- Stocker, Roman -- Follows, Michael J -- Stepanauskas, Ramunas -- Chisholm, Sallie W -- New York, N.Y. -- Science. 2014 Apr 25;344(6182):416-20. doi: 10.1126/science.1248575.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, MA 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24763590" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; Biological Evolution ; Ecosystem ; Genes, Bacterial ; *Genetic Variation ; *Genome, Bacterial ; Metagenomics ; Molecular Sequence Data ; Mutation ; Phylogeny ; Polymorphism, Single Nucleotide ; Prochlorococcus/classification/*genetics/*physiology ; Seasons ; Seawater/*microbiology ; Sequence Analysis, DNA ; Single-Cell Analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...