ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2021-02-10
    Beschreibung: We describe numerical simulations designed to help elucidate the role of ocean salinity in climate. Using a general circulation model, we study a 100-year sensitivity experiment in which the global-mean salinity is doubled from its present observed value, by adding 35 psu everywhere. The salinity increase produces a rapid global-mean sea-surface warming of 0.8◦ within a few years, caused by reduced vertical mixing associated with changes in cabbeling. The warming is followed by a gradual global mean sea-surface cooling of 0.4 ◦C over the next few decades, caused by an increase in the vertical (downward) component of the isopycnal diffusive heat flux. We find no evidence of impacts on the variability of either the Atlantic thermohaline circulation or the El Ni ̃no/Southern Oscillation. The mean strength of the Atlantic meridional overturning is slightly reduced and the North Atlantic Deep Water penetrates less deeply. Nevertheless, our results dispute claims that higher salinities for the world ocean have profound consequences for the thermohaline circulation. In additional experiments with doubled atmospheric carbon dioxide, we find that the amplitude and spatial pattern of the global warming signal are modified in the hypersaline ocean. In particular, the ocean’s contribution to the climate sensitivity is significantly reduced. We infer the existence of a non-linear interaction between the climate responses to modified carbon dioxide and modified salinity.
    Beschreibung: Published
    Beschreibung: 108-123
    Beschreibung: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): ocean ; salinity ; climate ; thermohaline circulation ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2017-04-04
    Beschreibung: This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using scenario climate simulations carried out with a fully coupled high-resolution global general circulation model. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the 20th Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical North West Pacific (NWP) and North Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Despite the overall warming of the tropical upper ocean and the expansion of warm SSTs to the subtropics and mid-latitudes, the action of the TCs remains well confined to the tropical region and the peak of TC number remains equatorward of 20° latitude in both Hemispheres. An extended version of this work is in available on Journal of Climate (Gualdi et al.,2008 - DOI:10.1175/2008JCLI1921.1)
    Beschreibung: Published
    Beschreibung: 287-321
    Beschreibung: 3.7. Dinamica del clima e dell'oceano
    Beschreibung: open
    Schlagwort(e): climate ; tropical cyclones ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2017-04-04
    Beschreibung: The interannual variability in the tropical Indian Ocean, and in particular the Indian Ocean di- pole mode (IODM), is investigated using both obser- vations and a multi-decadal simulations performed by the coupled atmosphere–ocean general circulation model SINTEX. Overall, the characteristics of the simulated IODM are close to the features of the ob- served mode. Evidence of significant correlations be- tween sea level pressure anomalies in the southeastern Indian Ocean and sea surface temperature anomalies in the tropical Indian and Pacific Oceans have been found both in observations and a multi-decadal simulation. In particular, a positive SLP anomaly in the southeastern part of the basin seems to produce favorable conditions for the development of an IODM event. The role played by the ocean dynamics both in the developing and closing phases of the IODM events is also inves- tigated. Our results suggest that, during the developing phase, the heat content and SST variability associated with the IODM are influenced by a local response of the ocean to the winds, and a remote response with the excitation of Kelvin and Rossby waves. Ocean wave dynamics appear to be important also during the dying phase of the IODM, when equatorial downwelling Kelvin waves transport positive heat content anomalies from the western to the eastern part of the basin, suppressing the zonal heat content anomaly gradient. The results obtained from the model suggest a mechanism for the IODM. This mechanism is generally consistent with the characteristics of the observed IODM. Furthermore, it might give some clue in understanding the correlation between IODM and ENSOactivity found both in the model and in the observations.
    Beschreibung: This work has been supported by the European Community contract SINTEX ENV4-CT98-0714.
    Beschreibung: Published
    Beschreibung: 567-582
    Beschreibung: 4A. Clima e Oceani
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Coupled General Circulation Model ; Indian Ocean Dipole Mode ; Interannual variability ; 03. Hydrosphere::03.03. Physical::03.03.03. Interannual-to-decadal ocean variability
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...