ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: The Hudson Bay Lowlands (HBL) is the second largest boreal wetland ecosystem in the world and an important natural source of global atmospheric methane. We quantify the HBL methane emissions by using the GEOS-Chem chemical transport model to simulate aircraft measurements over the HBL from the ARCTAS and pre-HIPPO campaigns in May-July 2008, together with continuous 2004-2008 surface observations at Fraserdale (southern edge of HBL) and Alert (Arctic background). The difference in methane concentrations between Fraserdale and Alert is shown to be a good indicator of HBL emissions, and implies a sharp seasonal onset of emissions in late May (consistent with the aircraft data), a peak in July-August, and a seasonal shut-off in September. The model, in which seasonal variation of emission is mainly driven by surface temperature, reproduces well the observations in summer but its seasonal shoulders are too broad. We suggest that this reflects the suppression of emissions by snow cover and greatly improve the model simulation by accounting for this effect. Our resulting best estimate for HBL methane emissions is 2.3 Tg/a, several-fold higher than previous estimates (Roulet et al., 1994; Worthy et al., 2000).
    Keywords: Geophysics
    Type: NF1676L-12803 , Atmospheric Chemistry and Physics; 11; 8; 3773-3779
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We describe the Harvard-NASA Emission Component version 1.0 (HEMCO), a stand-alone software component for computing emissions in global atmospheric models. HEMCO determines emissions from different sources, regions, and species on a user-defined grid and can combine, overlay, and update a set of data inventories and scale factors, as specified by the user through the HEMCO configuration file. New emission inventories at any spatial and temporal resolution are readily added to HEMCO and can be accessed by the user without any preprocessing of the data files or modification of the source code. Emissions that depend on dynamic source types and local environmental variables such as wind speed or surface temperature are calculated in separate HEMCO extensions. HEMCO is fully compliant with the Earth System Modeling Framework (ESMF) environment. It is highly portable and can be deployed in a new model environment with only few adjustments at the top-level interface. So far, we have implemented HEMCO in the NASA Goddard Earth Observing System (GEOS-5) Earth system model (ESM) and in the GEOS-Chem chemical transport model (CTM). By providing a widely applicable framework for specifying constituent emissions, HEMCO is designed to ease sensitivity studies and model comparisons, as well as inverse modeling in which emissions are adjusted iteratively. The HEMCO code, extensions, and the full set of emissions data files used in GEOS-Chem are available at http: //wiki.geos-chem.org/HEMCO.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN21573 , Geoscientific Model Development; 7; 1409-1417
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...