ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Earth Resources and Remote Sensing; Instrumentation and Photography  (1)
  • Environment Pollution; Meteorology and Climatology  (1)
  • Optics  (1)
  • Meteorology and Climatology; Oceanography
  • Meteorology and Climatology; Statistics and Probability; Earth Resources and Remote Sensing
  • 2010-2014  (3)
Sammlung
Schlagwörter
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2019-07-13
    Beschreibung: Remote sensing of aerosol optical properties is difficult, but multi-angle, multi-spectral, polarimetric instruments have the potential to retrieve sufficient information about aerosols that they can be used to improve global climate models. However, the complexity of these instruments means that it is difficult to intuitively understand the relationship between instrument design and retrieval success. We apply a Bayesian statistical technique that relates instrument characteristics to the information contained in an observation. Using realistic simulations of fine size mode dominated spherical aerosols, we investigate three instrument designs. Two of these represent instruments currently in orbit: the Multiangle Imaging SpectroRadiometer (MISR) and the POLarization and Directionality of the Earths Reflectances (POLDER). The third is the Aerosol Polarimetry Sensor (APS), which failed to reach orbit during recent launch, but represents a viable design for future instruments. The results show fundamental differences between the three, and offer suggestions for future instrument design and the optimal retrieval strategy for current instruments. Generally, our results agree with previous validation efforts of POLDER and airborne prototypes of APS, but show that the MISR aerosol optical thickness uncertainty characterization is possibly underestimated.
    Schlagwort(e): Optics
    Materialart: GSFC.JA.7129.2012 , Optics Express; 20; 19; 21457-21484
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-07-12
    Beschreibung: APS is a mature design that has already been built and has a TRL of 7. Algorithmic and retrieval capabilities continue to improve and make better and more sophisticated used of the data. Adjoint solutions, both in one dimensional and three dimensional are computationally efficient and should be the preferred implementation for the calculation of Jacobians (one dimensional), or cost-function gradients (three dimensional). Adjoint solutions necessarily provide resolution of internal fields and simplify incorporation of active measurements in retrievals, which will be necessary for a future ACE mission. Its best to test these capabilities when you know the answer: OSSEs that are well constrained observationally provide the best place to test future multi-instrument platform capabilities and ensure capabilities will meet scientific needs.
    Schlagwort(e): Earth Resources and Remote Sensing; Instrumentation and Photography
    Materialart: GSFC-E-DAA-TN16869
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2019-08-24
    Beschreibung: Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.
    Schlagwort(e): Environment Pollution; Meteorology and Climatology
    Materialart: GSFC-E-DAA-TN8855 , GSFC-E-DAA-TN8855 , Atmospheric Chemistry and Physics; 12; 16; 7647-7687
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...