ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (6)
  • Ocean circulation  (4)
  • Atmosphere-ocean interaction  (2)
  • Instability
  • 2010-2014  (6)
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 111 (2006): C03005, doi:10.1029/2005JC003128.
    Description: We discuss the ocean circulation derived from the temporally averaged sea surface height, which is referenced to the recently released geoid from the Gravity Recovery and Climate Experiment (GRACE) mission (GRACE Gravity Model 02 (GGM02)). The creation of a precise, independent geoid allows for the calculation of the reference gravitational potential undulation surface, which is associated with the resting ocean surface height. This reference height is then removed from the temporally averaged sea surface height, leaving the dynamic ocean topography. At its most basic level the dynamic ocean topography can be related to the ocean's surface circulation through geostrophy. This has previously been impracticable because of large uncertainties in previous estimates of the Earth's geoid. Prior geoids included the temporally averaged sea surface from altimeters as a proxy for the geoid and therefore were unsuitable for calculations of the ocean's circulation. Geoid undulations are calculated from the GRACE geoid and compared to those from the NASA Goddard Space Flight Center and National Imagery and Mapping Agency Joint Earth Geopotential Model (EGM96) geoid. Error estimates are made to assess the accuracy of the new geoid. The deep ocean pressure field is also estimated by combining the calculated dynamic ocean topography with hydrography. Finally, the derived circulation is compared to independent observations of the circulation from sea surface drifters and subsurface floats. It is shown that the GGM02 geoid is significantly more accurate for use in estimating the ocean's circulation.
    Description: This work was supported by grants NNG04GE95G from the National Aeronautics and Space Administration and OCE 01-37122 from the National Science Foundation and the Young Investigator Program award N00014-03-1-0545 from the Office of Naval Research.
    Keywords: Ocean circulation ; Geoid ; Altimetry index
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1764-1779, doi:10.1175/2008JPO3921.1.
    Description: Middepth, time-mean circulation in the western North Pacific Ocean (28°–45°N, 140°–165°E) is investigated using drift information from the profiling floats deployed in the Kuroshio Extension System Study (KESS) and the International Argo programs. A well-defined, cyclonic recirculation gyre (RG) is found to exist north of the Kuroshio Extension jet, confined zonally between the Japan Trench (145°E) and the Shatsky Rise (156°E), and bordered to the north by the subarctic boundary along 40°N. This northern RG, which is simulated favorably in the eddy-resolving OGCM for the Earth Simulator (OFES) hindcast run model, has a maximum volume transport at 26.4 Sv across 159°E and its presence persists on the interannual and longer time scales. An examination of the time-mean x-momentum balance from the OFES hindcast run output reveals that horizontal convergence of Reynolds stresses works to accelerate both the eastward-flowing Kuroshio Extension jet and a westward mean flow north of the meandering jet. The fact that the northern RG is eddy driven is further confirmed by examining the turbulent Sverdrup balance, in which convergent eddy potential vorticity fluxes are found to induce the cyclonic RG across the background potential vorticity gradient field. For the strength of the simulated northern RG, the authors find the eddy dissipation effect to be important as well.
    Description: This study was supported by NSF through Grant OCE-0220680 (UH) and OCE-0220161 (WHOI).
    Keywords: Gyres ; Ocean circulation ; Profilers ; Jets ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 1999
    Description: A state-of-the-art, high-resolution ocean general circulation model is used to estimate the time-dependent global ocean heat transport and investigate its dynamics. The north-south heat transport is the prime manifestation of the ocean’s role in global climate, but understanding of its variability has been fragmentary owing to uncertainties in observational analyses, limitations in models, and the lack of a convincing mechanism. These issues are addressed in this thesis. Technical problems associated with the forcing and sampling of the model, and the impact of high-frequency motions are discussed. Numerical schemes are suggested to remove the inertial energy to prevent aliasing when the model fields are stored for later analysis. Globally, the cross-equatorial, seasonal heat transport fluctuations are close to +4.5 x 1015 watts, the same amplitude as the seasonal, cross-equatorial atmospheric energy transport. The variability is concentrated within 200 of the equator and dominated by the annual cycle. The majority of it is due to wind-induced current fluctuations in which the time-varying wind drives Ekman layer mass transports that are compensated by depth-independent return flows. The temperature difference between the mass transports gives rise to the time-dependent heat transport. The rectified eddy heat transport is calculated from the model. It is weak in the central gyres, and strong in the western boundary currents, the Antarctic Circumpolar Current, and the equatorial region. It is largely confined to the upper 1000 meters of the ocean. The rotational component of the eddy heat transport is strong in the oceanic jets, while the divergent component is strongest in the equatorial region and Antarctic Circumpolar Current. The method of estimating the eddy heat transport from an eddy diffusivity derived from mixing length arguments and altimetry data, and the climatological temperature field, is tested and shown not to reproduce the model’s directly evaluated eddy heat transport. Possible reasons for the discrepancy are explored.
    Description: Funding for this research came from the Department of Defense under a National Defense Science and Engineering Graduate Fellowship. Financial support was also contributed by the National Science Foundation through grants #OCE-9617570 and #OCE-9730071, and the Tokyo Electric Power Company through the TEPCO/MIT Environmental Research Program. The author received partial support from an MIT Climate Modeling Fellowship, made possible by a gift from the American Automobile Manufacturers Association.
    Keywords: Ocean-atmosphere interaction ; Heat budget ; Ocean circulation ; Ocean currents
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2842–2860, doi:10.1175/JCLI-D-13-00227.1.
    Description: Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.
    Description: This work was sponsored by the National Science Foundation (Grants OCE-0220161, OCE-0825152, and OCE-0827125).
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Mesoscale processes ; Mesoscale systems ; Ocean dynamics ; Eddies ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 1361–1389, doi:10.1175/JCLI-D-11-00091.1.
    Description: The ocean component of the Community Climate System Model version 4 (CCSM4) is described, and its solutions from the twentieth-century (20C) simulations are documented in comparison with observations and those of CCSM3. The improvements to the ocean model physical processes include new parameterizations to represent previously missing physics and modifications of existing parameterizations to incorporate recent new developments. In comparison with CCSM3, the new solutions show some significant improvements that can be attributed to these model changes. These include a better equatorial current structure, a sharper thermocline, and elimination of the cold bias of the equatorial cold tongue all in the Pacific Ocean; reduced sea surface temperature (SST) and salinity biases along the North Atlantic Current path; and much smaller potential temperature and salinity biases in the near-surface Pacific Ocean. Other improvements include a global-mean SST that is more consistent with the present-day observations due to a different spinup procedure from that used in CCSM3. Despite these improvements, many of the biases present in CCSM3 still exist in CCSM4. A major concern continues to be the substantial heat content loss in the ocean during the preindustrial control simulation from which the 20C cases start. This heat loss largely reflects the top of the atmospheric model heat loss rate in the coupled system, and it essentially determines the abyssal ocean potential temperature biases in the 20C simulations. There is also a deep salty bias in all basins. As a result of this latter bias in the deep North Atlantic, the parameterized overflow waters cannot penetrate much deeper than in CCSM3.
    Description: NCAR is sponsored by the National Science Foundation. The CCSM is also sponsored by the Department of Energy. SGY was supported by the NOAA Climate Program Office under Climate Variability and Predictability Program Grant NA09OAR4310163.
    Description: 2012-09-01
    Keywords: Ocean circulation ; Climate models ; General circulation models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 7781–7801, doi:10.1175/JCLI-D-11-00442.1.
    Description: Air–sea fluxes from the Community Climate System Model version 4 (CCSM4) are compared with the Coordinated Ocean-Ice Reference Experiment (CORE) dataset to assess present-day mean biases, variability errors, and late twentieth-century trend differences. CCSM4 is improved over the previous version, CCSM3, in both air–sea heat and freshwater fluxes in some regions; however, a large increase in net shortwave radiation into the ocean may contribute to an enhanced hydrological cycle. The authors provide a new baseline for assessment of flux variance at annual and interannual frequency bands in future model versions and contribute a new metric for assessing the coupling between the atmospheric and oceanic planetary boundary layer (PBL) schemes of any climate model. Maps of the ratio of CCSM4 variance to CORE reveal that variance on annual time scales has larger error than on interannual time scales and that different processes cause errors in mean, annual, and interannual frequency bands. Air temperature and specific humidity in the CCSM4 atmospheric boundary layer (ABL) follow the sea surface conditions much more closely than is found in CORE. Sensible and latent heat fluxes are less of a negative feedback to sea surface temperature warming in the CCSM4 than in the CORE data with the model’s PBL allowing for more heating of the ocean’s surface.
    Description: The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. S. Stevensonwas supported byNASAGrantNNX09A020H and B. Fox-Kemper by Grants NSF 0934737 and NASA NNX09AF38G.
    Description: 2013-05-15
    Keywords: Atmosphere-ocean interaction ; Boundary layer ; Sea surface temperature ; Climate models ; Coupled models ; Model evaluation/performance
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...