ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astronomy  (21)
  • Mice  (19)
  • Computational Physics
  • Cosmology
  • Electronic structure and strongly correlated systems
  • Structure, structural phase transitions, mechanical properties, defects
  • 2010-2014  (44)
  • 1
    Publication Date: 2011-05-26
    Description: Author(s): Joshua A. Gordon, Christopher L. Holloway, James Booth, Sung Kim, Yu Wang, James Baker-Jarvis, and David R. Novotny In this paper we demonstrate tunability of a metasurface, which is the two-dimensional equivalent of a metamaterial, also referred to as a metafilm, by changing the permittivity in a continuous flow channel that interacts with the metasurface. Numerical simulations and experimental results are prese... [Phys. Rev. B 83, 205130] Published Wed May 25, 2011
    Keywords: Electronic structure and strongly correlated systems
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-19
    Description: Author(s): L. D. Nguyen, K. L. Baker, and D. H. Warner The combined use of atomistic simulations and transition state theory (TST) has enabled significant improvements in the prediction of thermally activated processes in a wide range of applications, e.g., conformation changes in molecules, chemical reactions, kinetic phase transitions, and solid-state... [Phys. Rev. B 84, 024118] Published Mon Jul 18, 2011
    Keywords: Structure, structural phase transitions, mechanical properties, defects
    Print ISSN: 1098-0121
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2010-02-19
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2010 Feb 18;463(7283):977-80. doi: 10.1038/463977a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20164931" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Fluorescence ; Life ; Luminescent Measurements/methods ; Magnetic Resonance Imaging ; Mice ; *Models, Animal ; Molecular Imaging/economics/instrumentation/*methods ; Positron-Emission Tomography ; Tomography, Emission-Computed, Single-Photon ; Whole Body Imaging/economics/instrumentation/*methods ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-19
    Description: Cysteine is the most intrinsically nucleophilic amino acid in proteins, where its reactivity is tuned to perform diverse biochemical functions. The absence of a consensus sequence that defines functional cysteines in proteins has hindered their discovery and characterization. Here we describe a proteomics method to profile quantitatively the intrinsic reactivity of cysteine residues en masse directly in native biological systems. Hyper-reactivity was a rare feature among cysteines and it was found to specify a wide range of activities, including nucleophilic and reductive catalysis and sites of oxidative modification. Hyper-reactive cysteines were identified in several proteins of uncharacterized function, including a residue conserved across eukaryotic phylogeny that we show is required for yeast viability and is involved in iron-sulphur protein biogenesis. We also demonstrate that quantitative reactivity profiling can form the basis for screening and functional assignment of cysteines in computationally designed proteins, where it discriminated catalytically active from inactive cysteine hydrolase designs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058684/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058684/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weerapana, Eranthie -- Wang, Chu -- Simon, Gabriel M -- Richter, Florian -- Khare, Sagar -- Dillon, Myles B D -- Bachovchin, Daniel A -- Mowen, Kerri -- Baker, David -- Cravatt, Benjamin F -- CA087660/CA/NCI NIH HHS/ -- MH084512/MH/NIMH NIH HHS/ -- R01 CA087660/CA/NCI NIH HHS/ -- R01 CA087660-09/CA/NCI NIH HHS/ -- R01 GM085117/GM/NIGMS NIH HHS/ -- R01 GM090294/GM/NIGMS NIH HHS/ -- R01 GM090294-02/GM/NIGMS NIH HHS/ -- R37 CA087660/CA/NCI NIH HHS/ -- R37 CA087660-10/CA/NCI NIH HHS/ -- U54 MH084512/MH/NIMH NIH HHS/ -- U54 MH084512-030004/MH/NIMH NIH HHS/ -- England -- Nature. 2010 Dec 9;468(7325):790-5. doi: 10.1038/nature09472. Epub 2010 Nov 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21085121" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Biocatalysis ; Cell Line, Tumor ; Conserved Sequence ; Cysteine/analysis/*metabolism ; Humans ; Hydrolases/chemistry/metabolism ; Iron-Sulfur Proteins/biosynthesis ; Liver/metabolism ; Mice ; Myocardium/metabolism ; Nuclear Proteins/chemistry/metabolism ; Oxidation-Reduction ; Protein Engineering ; Protein Hydrolysates ; Protein-Arginine N-Methyltransferases/chemistry/metabolism ; Proteins/*chemistry/*metabolism ; Proteome/*chemistry/*metabolism ; Proteomics/methods ; Repressor Proteins/chemistry/metabolism ; Saccharomyces cerevisiae/genetics/metabolism ; Saccharomyces cerevisiae Proteins/chemistry/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-15
    Description: The structure of BPSL1549, a protein of unknown function from Burkholderia pseudomallei, reveals a similarity to Escherichia coli cytotoxic necrotizing factor 1. We found that BPSL1549 acted as a potent cytotoxin against eukaryotic cells and was lethal when administered to mice. Expression levels of bpsl1549 correlate with conditions expected to promote or suppress pathogenicity. BPSL1549 promotes deamidation of glutamine-339 of the translation initiation factor eIF4A, abolishing its helicase activity and inhibiting translation. We propose to name BPSL1549 Burkholderia lethal factor 1.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3364511/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cruz-Migoni, Abimael -- Hautbergue, Guillaume M -- Artymiuk, Peter J -- Baker, Patrick J -- Bokori-Brown, Monika -- Chang, Chung-Te -- Dickman, Mark J -- Essex-Lopresti, Angela -- Harding, Sarah V -- Mahadi, Nor Muhammad -- Marshall, Laura E -- Mobbs, George W -- Mohamed, Rahmah -- Nathan, Sheila -- Ngugi, Sarah A -- Ong, Catherine -- Ooi, Wen Fong -- Partridge, Lynda J -- Phillips, Helen L -- Raih, M Firdaus -- Ruzheinikov, Sergei -- Sarkar-Tyson, Mitali -- Sedelnikova, Svetlana E -- Smither, Sophie J -- Tan, Patrick -- Titball, Richard W -- Wilson, Stuart A -- Rice, David W -- 085162/Wellcome Trust/United Kingdom -- BB/D011795/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/D524975/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/E025293/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- WT085162AIA/Wellcome Trust/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- New York, N.Y. -- Science. 2011 Nov 11;334(6057):821-4. doi: 10.1126/science.1211915.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Biotechnology, Krebs Institute, University of Sheffield, Sheffield S10 2TN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22076380" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Animals ; Bacterial Proteins/*chemistry/genetics/metabolism/*toxicity ; Bacterial Toxins/*chemistry/genetics/metabolism/*toxicity ; Burkholderia pseudomallei/*chemistry/*pathogenicity ; Catalytic Domain ; Cell Line ; Crystallography, X-Ray ; Cytotoxins/chemistry/genetics/metabolism/toxicity ; Escherichia coli Proteins/chemistry ; Eukaryotic Initiation Factor-4A/*antagonists & inhibitors/metabolism ; Glutamine/metabolism ; Humans ; Mice ; Mice, Inbred BALB C ; Models, Molecular ; Mutant Proteins/toxicity ; Peptide Chain Initiation, Translational/drug effects ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-04-09
    Description: Cytotoxic T lymphocyte antigen 4 (CTLA-4) is an essential negative regulator of T cell immune responses whose mechanism of action is the subject of debate. CTLA-4 shares two ligands (CD80 and CD86) with a stimulatory receptor, CD28. Here, we show that CTLA-4 can capture its ligands from opposing cells by a process of trans-endocytosis. After removal, these costimulatory ligands are degraded inside CTLA-4-expressing cells, resulting in impaired costimulation via CD28. Acquisition of CD86 from antigen-presenting cells is stimulated by T cell receptor engagement and observed in vitro and in vivo. These data reveal a mechanism of immune regulation in which CTLA-4 acts as an effector molecule to inhibit CD28 costimulation by the cell-extrinsic depletion of ligands, accounting for many of the known features of the CD28-CTLA-4 system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3198051/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Qureshi, Omar S -- Zheng, Yong -- Nakamura, Kyoko -- Attridge, Kesley -- Manzotti, Claire -- Schmidt, Emily M -- Baker, Jennifer -- Jeffery, Louisa E -- Kaur, Satdip -- Briggs, Zoe -- Hou, Tie Z -- Futter, Clare E -- Anderson, Graham -- Walker, Lucy S K -- Sansom, David M -- 17851/Arthritis Research UK/United Kingdom -- BB/D011000/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BB/H013598/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0400931/Medical Research Council/United Kingdom -- G0401620/Medical Research Council/United Kingdom -- G0802382/Medical Research Council/United Kingdom -- G1000213/Medical Research Council/United Kingdom -- G9818340/Medical Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Medical Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2011 Apr 29;332(6029):600-3. doi: 10.1126/science.1202947. Epub 2011 Apr 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Centre for Immune Regulation, School of Immunity and Infection, Institute of Biomedical Research, University of Birmingham Medical School, Birmingham B15 2TT, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21474713" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/*immunology/metabolism ; Antigens, CD28/*immunology ; Antigens, CD80/*immunology/metabolism ; Antigens, CD86/*immunology/metabolism ; CHO Cells ; CTLA-4 Antigen ; Cricetinae ; Cricetulus ; Dendritic Cells/immunology ; *Endocytosis ; Humans ; Jurkat Cells ; Ligands ; Lymphocyte Activation ; Mice ; Mice, Transgenic ; Models, Biological ; Ovalbumin/immunology ; Receptors, Antigen, T-Cell/immunology ; Recombinant Fusion Proteins/metabolism ; T-Lymphocyte Subsets/*immunology/metabolism ; T-Lymphocytes, Regulatory/immunology/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-06-11
    Description: Down's syndrome (DS) is a genetic disorder caused by full or partial trisomy of human chromosome 21 and presents with many clinical phenotypes including a reduced incidence of solid tumours. Recent work with the Ts65Dn model of DS, which has orthologues of about 50% of the genes on chromosome 21 (Hsa21), has indicated that three copies of the ETS2 (ref. 3) or DS candidate region 1 (DSCR1) genes (a previously known suppressor of angiogenesis) is sufficient to inhibit tumour growth. Here we use the Tc1 transchromosomic mouse model of DS to dissect the contribution of extra copies of genes on Hsa21 to tumour angiogenesis. This mouse expresses roughly 81% of Hsa21 genes but not the human DSCR1 region. We transplanted B16F0 and Lewis lung carcinoma tumour cells into Tc1 mice and showed that growth of these tumours was substantially reduced compared with wild-type littermate controls. Furthermore, tumour angiogenesis was significantly repressed in Tc1 mice. In particular, in vitro and in vivo angiogenic responses to vascular endothelial growth factor (VEGF) were inhibited. Examination of the genes on the segment of Hsa21 in Tc1 mice identified putative anti-angiogenic genes (ADAMTS1and ERG) and novel endothelial cell-specific genes, never previously shown to be involved in angiogenesis (JAM-B and PTTG1IP), that, when overexpressed, are responsible for inhibiting angiogenic responses to VEGF. Three copies of these genes within the stromal compartment reduced tumour angiogenesis, explaining the reduced tumour growth in DS. Furthermore, we expect that, in addition to the candidate genes that we show to be involved in the repression of angiogenesis, the Tc1 mouse model of DS will permit the identification of other endothelium-specific anti-angiogenic targets relevant to a broad spectrum of cancer patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479956/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479956/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Reynolds, Louise E -- Watson, Alan R -- Baker, Marianne -- Jones, Tania A -- D'Amico, Gabriela -- Robinson, Stephen D -- Joffre, Carine -- Garrido-Urbani, Sarah -- Rodriguez-Manzaneque, Juan Carlos -- Martino-Echarri, Estefania -- Aurrand-Lions, Michel -- Sheer, Denise -- Dagna-Bricarelli, Franca -- Nizetic, Dean -- McCabe, Christopher J -- Turnell, Andrew S -- Kermorgant, Stephanie -- Imhof, Beat A -- Adams, Ralf -- Fisher, Elizabeth M C -- Tybulewicz, Victor L J -- Hart, Ian R -- Hodivala-Dilke, Kairbaan M -- 080174/Wellcome Trust/United Kingdom -- 12007/Cancer Research UK/United Kingdom -- A12007/Cancer Research UK/United Kingdom -- A3585/Cancer Research UK/United Kingdom -- G0501003/Medical Research Council/United Kingdom -- G0501003(75694)/Medical Research Council/United Kingdom -- G0601056/Medical Research Council/United Kingdom -- G0901609/Medical Research Council/United Kingdom -- MC_U117527252/Medical Research Council/United Kingdom -- U.1175.02.001.00001(60485)/Medical Research Council/United Kingdom -- England -- Nature. 2010 Jun 10;465(7299):813-7. doi: 10.1038/nature09106.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Adhesion and Angiogenesis Laboratory, Barts Institute of Cancer, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK. l.reynolds@qmul.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20535211" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins/genetics/metabolism ; Animals ; Carcinoma, Lewis Lung/*blood supply/complications/genetics/pathology ; Carrier Proteins/genetics/metabolism ; Cell Adhesion Molecules/antagonists & inhibitors/genetics/metabolism ; Chromosomes, Mammalian/genetics ; *Disease Models, Animal ; Down Syndrome/complications/*genetics/physiopathology ; Female ; Gene Dosage/*genetics ; Humans ; Immunoglobulins/genetics/metabolism ; Male ; Melanoma, Experimental/*blood supply/complications/genetics/pathology ; Mice ; Neoplasm Transplantation ; Neovascularization, Pathologic/*genetics/pathology ; Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Protein c-ets-2/genetics/metabolism ; Transcription Factors ; Trisomy/genetics ; Vascular Endothelial Growth Factor A/antagonists & ; inhibitors/metabolism/pharmacology ; Vascular Endothelial Growth Factor Receptor-2/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-11-04
    Description: Advanced age is the main risk factor for most chronic diseases and functional deficits in humans, but the fundamental mechanisms that drive ageing remain largely unknown, impeding the development of interventions that might delay or prevent age-related disorders and maximize healthy lifespan. Cellular senescence, which halts the proliferation of damaged or dysfunctional cells, is an important mechanism to constrain the malignant progression of tumour cells. Senescent cells accumulate in various tissues and organs with ageing and have been hypothesized to disrupt tissue structure and function because of the components they secrete. However, whether senescent cells are causally implicated in age-related dysfunction and whether their removal is beneficial has remained unknown. To address these fundamental questions, we made use of a biomarker for senescence, p16(Ink4a), to design a novel transgene, INK-ATTAC, for inducible elimination of p16(Ink4a)-positive senescent cells upon administration of a drug. Here we show that in the BubR1 progeroid mouse background, INK-ATTAC removes p16(Ink4a)-positive senescent cells upon drug treatment. In tissues--such as adipose tissue, skeletal muscle and eye--in which p16(Ink4a) contributes to the acquisition of age-related pathologies, life-long removal of p16(Ink4a)-expressing cells delayed onset of these phenotypes. Furthermore, late-life clearance attenuated progression of already established age-related disorders. These data indicate that cellular senescence is causally implicated in generating age-related phenotypes and that removal of senescent cells can prevent or delay tissue dysfunction and extend healthspan.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468323/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Darren J -- Wijshake, Tobias -- Tchkonia, Tamar -- LeBrasseur, Nathan K -- Childs, Bennett G -- van de Sluis, Bart -- Kirkland, James L -- van Deursen, Jan M -- AG13925/AG/NIA NIH HHS/ -- CA96985/CA/NCI NIH HHS/ -- P30 DK050456/DK/NIDDK NIH HHS/ -- R01 AG013925/AG/NIA NIH HHS/ -- R01 AG013925-14/AG/NIA NIH HHS/ -- R01 CA096985/CA/NCI NIH HHS/ -- R01 CA096985-10/CA/NCI NIH HHS/ -- England -- Nature. 2011 Nov 2;479(7372):232-6. doi: 10.1038/nature10600.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatric and Adolescent Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22048312" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue/cytology/drug effects/pathology ; Aging/drug effects/*physiology ; Animals ; Bone Marrow Cells/cytology/drug effects ; Cell Aging/drug effects/*physiology ; Cell Count ; Cell Cycle Proteins ; Cells, Cultured ; Cyclin-Dependent Kinase Inhibitor p16/*metabolism ; Eye/cytology/drug effects/pathology ; Female ; Gene Expression ; Genotype ; Longevity/drug effects/physiology ; Male ; Mice ; Mice, Transgenic ; Muscle, Skeletal/cytology/drug effects/pathology ; Phenotype ; Progeria/metabolism ; Protein-Serine-Threonine Kinases/metabolism ; Tacrolimus/analogs & derivatives/pharmacology ; Time Factors ; Weaning
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-10-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2013 Oct 10;502(7470):156-8. doi: 10.1038/502156a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24108031" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Eye ; Humans ; Mice ; Models, Animal ; Neurons/cytology/physiology ; Neurosciences/*standards/trends ; Visual Cortex/cytology/*physiology ; Visual Perception/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2013-01-11
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, Monya -- England -- Nature. 2013 Jan 10;493(7431):145. doi: 10.1038/493145a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23302837" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Embryonic Stem Cells/cytology/immunology ; Humans ; Induced Pluripotent Stem Cells/cytology/*immunology ; Mice ; *Patient Safety ; *Stem Cell Transplantation/adverse effects ; Transplantation Immunology/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...