ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Benthic foraminifera  (2)
  • Little Ice Age  (2)
  • North Atlantic  (2)
  • AAIW  (1)
  • Paleothermometry
  • 2010-2014  (7)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA3231, doi:10.1029/2012PA002313.
    Description: Accurate low-latitude sea surface temperature (SST) records that predate the instrumental era are needed to put recent warming in the context of natural climate variability and to evaluate the persistence of lower frequency climate variability prior to the instrumental era and the possible influence of anthropogenic climate change on this variability. Here we present a 235-year-long SST reconstruction based on annual growth rates (linear extension) of three colonies of the Atlantic coral Siderastrea siderea sampled at two sites on the northeastern Yucatan Peninsula, Mexico, located within the Atlantic Warm Pool (AWP). AWP SSTs vary in concert the Atlantic Multidecadal Oscillation (AMO), a basin-wide, quasiperiodic (∼60–80 years) oscillation of North Atlantic SSTs. We demonstrate that the annual linear growth rates of all three coral colonies are significantly inversely correlated with SST. We calibrate annual linear growth rates to SST between 1900 and 1960 AD. The linear correlation coefficient over the calibration period is r = −0.77 and −0.66 over the instrumental record (1860–2008 AD). We apply our calibration to annual linear growth rates to extend the SST record to 1775 AD and show that multidecadal SST variability has been a persistent feature of the AWP, and likely, of the North Atlantic over this time period. Our results imply that tropical Atlantic SSTs remained within 1°C of modern values during the past 225 years, consistent with a previous reconstruction based on coral growth rates and with most estimates based on the Mg/Ca of planktonic foraminifera from marine sediments.
    Description: Funding was provided by a scholarship to L.F.V.B. from ‘Consejo Nacional de Ciencia y Tecnología’ (CONACyT-Mexico), by CONACyT projects 104358 and 23749 to P.B., and by NSF OCE-0926986 to A.L.C. and D.W.O.
    Description: 2013-03-29
    Keywords: Atlantic Warm Pool ; Atlantic multidecadal variability ; Little Ice Age ; Sr/Ca ; Coral ; Sea surface temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2009. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 36 (2009): L11703, doi:10.1029/2009GL038677.
    Description: Proxy reconstructions and model simulations suggest that steeper interhemispheric sea surface temperature (SST) gradients lead to southerly Intertropical Convergence Zone (ITCZ) migrations during periods of North Atlantic cooling, the most recent of which was the Little Ice Age (LIA; ∼100–450 yBP). Evidence suggesting low-latitude Atlantic cooling during the LIA was relatively small (〈1°C) raises the possibility that the ITCZ may have responded to a hemispheric SST gradient originating in the extratropics. We use an atmospheric general circulation model (AGCM) to investigate the relative influence of low-latitude and extratropical SSTs on the meridional position of the ITCZ. Our results suggest that the ITCZ responds primarily to local, low-latitude SST anomalies and that small cool anomalies (〈0.5°C) can reproduce the LIA precipitation pattern suggested by paleoclimate proxies. Conversely, even large extratropical cooling does not significantly impact low-latitude hydrology in the absence of ocean-atmosphere interaction.
    Description: This work was supported by NSF grants OCE 0623364 and ATM 033746 as well as the student research fund of MIT’s Department of Earth, Atmospheric and Planetary Science.
    Keywords: Climate ; ITCZ ; Little Ice Age
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 27 (2012): PA2207, doi:10.1029/2011PA002244.
    Description: At the peak of the previous interglacial period, North Atlantic and subpolar climate shared many features in common with projections of our future climate, including warmer-than-present conditions and a diminished Greenland Ice Sheet (GIS). Here we portray changes in North Atlantic hydrography linked with Greenland climate during Marine Isotope Stage (MIS) 5e using (sub)centennially sampled records of planktonic foraminiferal isotopes and assemblage counts and ice-rafted debris counts, as well as modern analog technique and Mg/Ca-based paleothermometry. We use the core MD03-2664 recovered from a high accumulation rate site (∼34 cm/kyr) on the Eirik sediment drift (57°26.34′N, 48°36.35′W). The results indicate that surface waters off southern Greenland were ∼3–5°C warmer than today during early MIS 5e. These anomalously warm sea surface temperatures (SSTs) prevailed until the isotopic peak of MIS 5e when they were interrupted by a cooling event beginning at ∼126 kyr BP. This interglacial cooling event is followed by a gradual warming with SSTs subsequently plateauing just below early MIS 5e values. A planktonic δ18O minimum during the cooling event indicates that marked freshening of the surface waters accompanied the cooling. We suggest that switches in the subpolar gyre hydrography occurred during a warmer climate, involving regional changes in freshwater fluxes/balance and East Greenland Current influence in the study area. The nature of these hydrographic transitions suggests that they are most likely related to large-scale circulation dynamics, potentially amplified by GIS meltwater influences.
    Description: This work is a contribution of the European Science Foundation EuroMARC program, through the AMOCINT project, funded through grants from the Research Council of Norway (RCN) and contributes to EU-FP7 IP Past4Future. N. Irvalı was additionally funded by an ESF EUROCORES Short-term Visit grant and a RCN Leiv Eiriksson mobility grant to support research stays at the University of Edinburgh, UK, and Woods Hole Oceanographic Institution, USA, respectively, during which parts of the data for this paper were acquired. U. Ninnemann was funded by a University of Bergen Meltzer research grant.
    Description: 2012-11-12
    Keywords: Eirik Drift ; MIS 5e ; North Atlantic ; Last interglacial ; Multiproxy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2006. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 21 (2006): PA1007, doi:10.1029/2005PA001158.
    Description: Core top samples from Atlantic (Little Bahama Banks (LBB)) and Pacific (Hawaii and Indonesia) depth transects have been analyzed in order to assess the influence of bottom water temperature (BWT) and aragonite saturation levels on Mg/Ca and Sr/Ca ratios in the aragonitic benthic foraminifer Hoeglundina elegans. Both the Mg/Ca and Sr/Ca ratios in H. elegans tests show a general decrease with increasing water depth. Although at each site the decreasing trends are consistent with the in situ temperature profile, Mg/Ca and Sr/Ca ratios in LBB are substantially higher than in Indonesia and Hawaii at comparable water depths with a greater difference observed with increasing water depth. Because we find no significant difference between results obtained on “live” and “dead” specimens, we propose that these differences are due to primary effects on the metal uptake during test formation. Evaluation of the water column properties at each site suggests that in situ CO3 ion concentrations play an important role in determining the H. elegans Mg/Ca and Sr/Ca ratios. The CO3 ion effect is limited, however, only to aragonite saturation levels ([ΔCO3]aragonite) below 15 μmol kg−1. Above this level, temperature exerts a dominant effect. Accordingly, we propose that Mg/Ca and Sr/Ca in H. elegans tests can be used to reconstruct thermocline temperatures only in waters oversaturated with respect to the mineral aragonite using the following relationships: Mg/Ca = (0.034 ± 0.002)BWT + (0.96 ± 0.03) and Sr/Ca = (0.060 ± 0.002)BWT + (1.53 ± 0.03) (for [ΔCO3]aragonite 〉 15 μmol kg−1). The standard error associated with these equations is about ±1.1°C. Reconstruction of deeper water temperatures is complicated because in undersaturated waters, changes in Mg/Ca and Sr/Ca ratios reflect a combination of changes in [CO3] and BWT. Overall, we find that Sr/Ca, rather than Mg/Ca, in H. elegans may be a more accurate proxy for reconstructing paleotemperatures.
    Description: Yair Rosenthal acknowledges the support of Amtzia Genin and the Hebrew University, Forchheimer Fellowship, during his sabbatical in the Inter-University Institute in Eilat, Israel. This project has been funded by NSF Awards OCE 0220922 to Y.R. and OCE 0220776 to D.W.O. and B.K.L.
    Keywords: Benthic foraminifera ; Paleothermometry ; Magnesium
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 26 (2011): PA2206, doi:10.1029/2010PA002038.
    Description: Western subtropical North Atlantic oceanic and atmospheric circulations connect tropical and subpolar climates. Variations in these circulations can generate regional climate anomalies that are not reflected in Northern Hemisphere averages. Assessing the significance of anthropogenic climate change at regional scales requires proxy records that allow recent trends to be interpreted in the context of long-term regional variability. We present reconstructions of Gulf Stream sea surface temperature (SST) and hydrographic variability during the past two millennia based on the magnesium/calcium ratio and oxygen isotopic composition of planktic foraminifera preserved in two western subtropical North Atlantic sediment cores. Reconstructed SST suggests low-frequency variability of ∼1°C during an interval that includes the Medieval Climate Anomaly (MCA) and the Little Ice Age (LIA). A warm interval near 1250 A.D. is distinct from regional and hemispheric temperature, possibly reflecting regional variations in ocean-atmosphere heat flux associated with changes in atmospheric circulation (e.g., the North Atlantic Oscillation) or the Atlantic Meridional Overturning Circulation. Seawater δ 18O, which is marked by a fresher MCA and a more saline LIA, covaries with meridional migrations of the Atlantic Intertropical Convergence Zone. The northward advection of tropical salinity anomalies by mean surface currents provides a plausible mechanism linking Carolina Slope and tropical Atlantic hydrology.
    Description: This study was supported by the Woods Hole Oceanographic Institution’s Ocean and Climate Change Institute (OCCI) and by the National Science Foundation.
    Keywords: North Atlantic ; Regional paleoclimate ; LIA ; MCA ; NAO
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q04003, doi:10.1029/2010GC003333.
    Description: Core top samples from Indonesian and northeast Atlantic depth transects were used to calibrate Mg/Ca and δ18O in tests of the calcitic benthic foraminifer Hyalinea balthica to bottom water temperature between 4°C and 13°C. This shallow infaunal species is primarily abundant in neritic to upper bathyal sediments (〈600 m). Both linear and exponential calibrations suggest a temperature sensitivity of ~12% per °C that is ~4 times higher than observed in other species of deep-sea benthic foraminifera. Culture experiments support the core top calibration. We find no discernible effect of salinity and saturation on Mg/Ca. Comparison between the measured benthic foraminiferal δ18O and predicted equilibrium values suggests that on average H. balthica δ18O is 0.64‰ ± 0.13‰ lower than predicted from the equilibrium composition. To test the reliability of using paired H. balthica Mg/Ca and δ18O measurements for reconstructing seawater δ18Osw and salinity, we apply this calibration to another depth transect from Cape Ghir off NW Africa, which was not included in the calibration. Based on error analysis of the calibration data and this validation test, we show that the uncertainty of reconstructing bottom water temperature and salinity from paired Mg/Ca and δ18O measurements of H. balthica is better than ±0.7°C and ±0.69 practical salinity scale, respectively. The small uncertainties allow for the reconstruction of seawater density to better than 0.3σθ units, which is precise enough for the identification of specific water masses and reconstruction of changes in their properties. We propose that the relatively high Mg content and temperature sensitivity of H. balthica might be due to minor, biologically mediated contribution of high-Mg calcite to the primarily low Mg calcite test, which is influenced by the ambient temperature. This hypothesis, if correct, suggests that benthic species with relatively high Mg/Ca may be better suited for deepwater temperature reconstructions than species that have thus far been more commonly used.
    Description: This project was funded by NSF Awards OCE 02‐20922 and 09‐02977 to YR, OCE 09‐28607 to MK, OCE02‐20776 to DWO, and DFG priority program INTERDYNAMIK to AM.
    Keywords: Mg/Ca ; Benthic foraminifera ; Temperature calibration ; Isotope
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Paleoceanography 25 (2010): PA4101, doi:10.1029/2010PA001962.
    Description: Paleoceanographic studies using benthic foraminiferal Cd as a nutrient tracer have provided a robust means of reconstructing glacial Atlantic Ocean water mass geometry, but a paucity of data from the South Atlantic above 1200 m has limited investigation of Antarctic Intermediate Water (AAIW) configuration and formation. A new Cd depth profile from Brazil margin sediments suggests that AAIW penetrated northward at 1100 m to at least 27°S in the glacial Atlantic. It exhibited substantially reduced δ13Cas values, confirming preliminary evidence that this AAIW was unique to the glacial Atlantic and that it formed differently than today, with less atmospheric contact.
    Keywords: Cadmium ; Last glacial maximum ; Atlantic Ocean ; AAIW
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...